

web development interview questions and answers:

1. HTML Questions

1.​ What is HTML?​

○​ HTML (HyperText Markup Language) is the standard language used to create
web pages and applications.

2.​ What are HTML5 new features?​

○​ New elements (<article>, <section>, <nav>, <video>, <audio>)
○​ Local storage
○​ Canvas and SVG support
○​ Geolocation API

3.​ What is the difference between <div> and ?​

○​ <div> is a block-level element, while is an inline element.
4.​ What is the purpose of the <meta> tag?​

○​ Provides metadata about the web page (e.g., character set, viewport

settings).
5.​ What is semantic HTML?​

○​ Using meaningful elements like <header>, <footer>, <article>, etc.

2. CSS Questions

6.​ What are the different types of CSS?​

○​ Inline CSS, Internal CSS, External CSS
7.​ What is the difference between relative, absolute, and fixed positioning?​

○​ relative: Relative to its normal position.
○​ absolute: Positioned relative to its nearest positioned ancestor.
○​ fixed: Stays fixed relative to the viewport.

8.​ What is Flexbox in CSS?​

○​ A layout model for distributing space in a container with display: flex.
9.​ What is the difference between em, rem, %, vw, and vh?​

○​ em: Relative to parent font size.

○​ rem: Relative to the root element’s font size.
○​ %: Relative to the parent element.
○​ vw: Percentage of the viewport width.
○​ vh: Percentage of the viewport height.

10.​What is Grid Layout in CSS?​

●​ A two-dimensional layout system using display: grid.Here are 20 coding
questions for web development interviews, covering HTML, CSS, JavaScript,
React, and Node.js.

●​

●​ 1. HTML & CSS Coding Questions
●​ 11: Create a simple responsive navigation bar using HTML & CSS.
●​ <!DOCTYPE html>
●​ <html lang="en">
●​ <head>
●​ <meta charset="UTF-8">
●​ <meta name="viewport" content="width=device-width, initial-scale=1.0">
●​ <title>Responsive Navbar</title>
●​ <style>
●​ * { margin: 0; padding: 0; box-sizing: border-box; }
●​ body { font-family: Arial, sans-serif; }
●​ .navbar { background: #333; padding: 10px; display: flex; justify-content:

space-between; align-items: center; }
●​ .navbar a { color: white; text-decoration: none; padding: 10px; }
●​ .menu { display: flex; }
●​ .menu a:hover { background: #555; }
●​ @media (max-width: 600px) {
●​ .menu { flex-direction: column; display: none; }
●​ .menu.show { display: flex; }
●​ }
●​ </style>
●​ </head>
●​ <body>
●​ <nav class="navbar">
●​ Logo
●​ <div class="menu">
●​ Home
●​ About
●​ Contact
●​ </div>
●​ </nav>
●​ </body>
●​ </html>
●​
●​
●​ 12: Center a div both vertically and horizontally.

●​ .center-div {
●​ display: flex;
●​ justify-content: center;
●​ align-items: center;
●​ height: 100vh;
●​ }
●​
●​
●​ 13: Create a button with a hover effect using CSS.
●​ .button {
●​ background-color: blue;
●​ color: white;
●​ padding: 10px 20px;
●​ border: none;
●​ transition: 0.3s;
●​ }
●​ .button:hover {
●​ background-color: darkblue;
●​ }
●​
●​

●​ 2. JavaScript Coding Questions
●​ 14: Reverse a string in JavaScript.
●​ function reverseString(str) {
●​ return str.split('').reverse().join('');
●​ }
●​ console.log(reverseString("hello")); // Output: "olleh"
●​
●​
●​ 15: Find the largest number in an array.
●​ function findLargest(arr) {
●​ return Math.max(...arr);
●​ }
●​ console.log(findLargest([2, 8, 1, 9, 3])); // Output: 9
●​
●​
●​ 16: Check if a number is prime.
●​ function isPrime(num) {
●​ if (num < 2) return false;
●​ for (let i = 2; i < num; i++) {
●​ if (num % i === 0) return false;
●​ }
●​ return true;
●​ }
●​ console.log(isPrime(7)); // Output: true
●​

●​
●​ 17: Write a function to remove duplicates from an array.
●​ function removeDuplicates(arr) {
●​ return [...new Set(arr)];
●​ }
●​ console.log(removeDuplicates([1, 2, 2, 3, 4, 4])); // Output: [1, 2, 3, 4]
●​
●​
●​ 18: Find the factorial of a number using recursion.
●​ function factorial(n) {
●​ return n === 0 ? 1 : n * factorial(n - 1);
●​ }
●​ console.log(factorial(5)); // Output: 120
●​
●​
●​ 19: FizzBuzz Problem
●​ for (let i = 1; i <= 20; i++) {
●​ console.log(i % 3 === 0 && i % 5 === 0 ? "FizzBuzz" : i % 3 === 0 ? "Fizz" : i % 5

=== 0 ? "Buzz" : i);
●​ }
●​
●​
●​ 20: Find missing number in an array.
●​ function findMissingNumber(arr) {
●​ let n = arr.length + 1;
●​ let sum = (n * (n + 1)) / 2;
●​ let actualSum = arr.reduce((acc, num) => acc + num, 0);
●​ return sum - actualSum;
●​ }
●​ console.log(findMissingNumber([1, 2, 4, 5, 6])); // Output: 3
●​
●​

●​ 3. React.js Coding Questions
●​ 21: Create a simple React component that displays a button and a

counter.
●​ import React, { useState } from 'react';
●​
●​ function Counter() {
●​ const [count, setCount] = useState(0);
●​ return (
●​ <div>
●​ <h2>Counter: {count}</h2>
●​ <button onClick={() => setCount(count + 1)}>Increase</button>
●​ </div>
●​);
●​ }

●​
●​ export default Counter;
●​
●​
●​ 22: Fetch data from an API and display it in React.
●​ import React, { useEffect, useState } from 'react';
●​
●​ function Users() {
●​ const [users, setUsers] = useState([]);
●​
●​ useEffect(() => {
●​ fetch("https://jsonplaceholder.typicode.com/users")
●​ .then(response => response.json())
●​ .then(data => setUsers(data));
●​ }, []);
●​
●​ return (
●​ <div>
●​ <h2>User List</h2>
●​
●​ {users.map(user => <li key={user.id}>{user.name})}
●​
●​ </div>
●​);
●​ }
●​
●​ export default Users;
●​
●​
●​ 23: Create a to-do list in React.
●​ import React, { useState } from 'react';
●​
●​ function TodoList() {
●​ const [tasks, setTasks] = useState([]);
●​ const [task, setTask] = useState('');
●​
●​ const addTask = () => {
●​ setTasks([...tasks, task]);
●​ setTask('');
●​ };
●​
●​ return (
●​ <div>
●​ <input type="text" value={task} onChange={(e) => setTask(e.target.value)} />
●​ <button onClick={addTask}>Add Task</button>
●​
●​ {tasks.map((t, index) => <li key={index}>{t})}

●​
●​ </div>
●​);
●​ }
●​
●​ export default TodoList;
●​
●​

●​ 4. Node.js & Backend Coding Questions
●​ 24: Create a simple Express.js server.
●​ const express = require('express');
●​ const app = express();
●​ const PORT = 3000;
●​
●​ app.get('/', (req, res) => {
●​ res.send('Hello World!');
●​ });
●​
●​ app.listen(PORT, () => {
●​ console.log(`Server is running on port ${PORT}`);
●​ });
●​
●​
●​ 25: Create a simple API endpoint using Express.js.
●​ app.get('/api/users', (req, res) => {
●​ res.json([{ id: 1, name: 'John' }, { id: 2, name: 'Jane' }]);
●​ });
●​
●​
●​ 26: Connect to MongoDB using Mongoose.
●​ const mongoose = require('mongoose');
●​ mongoose.connect('mongodb://localhost:27017/mydatabase', { useNewUrlParser:

true, useUnifiedTopology: true })
●​ .then(() => console.log('Connected to MongoDB'))
●​ .catch(err => console.error(err));
●​
●​
●​ 27: Hash a password using bcrypt.
●​ const bcrypt = require('bcrypt');
●​ const password = 'mypassword';
●​
●​ bcrypt.hash(password, 10, (err, hash) => {
●​ console.log(hash);
●​ });

●​ 28: Implement JWT authentication.
●​ const jwt = require('jsonwebtoken');
●​ const token = jwt.sign({ id: 1 }, 'secretkey', { expiresIn: '1h' });
●​ console.log(token);

3. JavaScript Questions

29.What is the difference between == and === in JavaScript?

●​ == checks for value equality (allows type coercion).
●​ === checks for both value and type equality.

30.What is the difference between map(), forEach(), and filter()?

●​ map(): Returns a new array.
●​ forEach(): Executes a function for each element, does not return a new array.
●​ filter(): Returns a new array with elements that satisfy a condition.
31.​What is SQL vs NoSQL?
●​ SQL: Structured, relational databases.
●​ NoSQL: Flexible, non-relational databases.
32.​What is normalization in databases?
●​ Organizing data to minimize redundancy.
33.​What are the different types of joins in SQL?
●​ INNER JOIN, LEFT JOIN, RIGHT JOIN, FULL OUTER JOIN.
34.​What is indexing in a database?
●​ A technique to speed up data retrieval.
35.​What is ACID in databases?
●​ Atomicity, Consistency, Isolation, Durability.

8. General Web Development Questions

36.​What is the difference between HTTP and HTTPS?
●​ HTTPS is secure and uses SSL/TLS encryption.
37.​What are cookies, localStorage, and sessionStorage?
●​ Cookies: Small data stored by websites.
●​ localStorage: Stores data with no expiration.
●​ sessionStorage: Stores data per session.
38.​What is a CDN?
●​ A Content Delivery Network used for faster content delivery.
39.​What is CORS?
●​ Cross-Origin Resource Sharing, allows web pages to request resources from

different origins.
40.​What is the difference between client-side and server-side rendering?

●​ Client-side: Renders pages on the browser.
●​ Server-side: Renders pages on the server before sending them.

Here are questions 41-100 for web development interviews:

9. Web Performance & Optimization Questions

41.​What is lazy loading?
●​ Lazy loading delays the loading of non-essential resources until they are needed.
42.​What are WebP images?
●​ WebP is a modern image format that provides better compression than JPEG or

PNG.
43.​What is the difference between throttling and debouncing?
●​ Throttling: Executes a function at most once in a given period.
●​ Debouncing: Delays execution until a pause occurs.
44.​What is a Service Worker?
●​ A script that runs in the background for caching and push notifications.
45.​What are critical rendering paths?
●​ The steps a browser takes to convert HTML, CSS, and JavaScript into a rendered

page.
46.​How does DNS lookup work?
●​ It translates domain names into IP addresses.
47.​What are Content Security Policies (CSP)?
●​ A security feature that prevents cross-site scripting (XSS) attacks.
48.​What is TTFB (Time to First Byte)?
●​ The time it takes for the first byte of a page to be received from the server.
49.​What is the difference between minification and compression?
●​ Minification removes unnecessary characters, while compression reduces file size.
50.​What is a PWA (Progressive Web App)?
●​ A web app that behaves like a native app, using Service Workers and Web

Manifests.

10. JavaScript Advanced Concepts

51.​What is memoization?
●​ A technique to store computed results and reuse them for performance optimization.
52.​What is the event loop in JavaScript?
●​ A mechanism that handles asynchronous operations in JavaScript.
53.​What is the difference between apply(), call(), and bind()?
●​ call(): Calls a function with arguments individually.
●​ apply(): Calls a function with arguments as an array.
●​ bind(): Returns a new function with the specified this.
54.​What is the difference between deep copy and shallow copy?
●​ Shallow copy copies object references, while deep copy clones nested objects.

55.​What is hoisting in JavaScript?
●​ Moving variable and function declarations to the top of their scope before execution.
56.​What are higher-order functions?
●​ Functions that take other functions as arguments or return them.
57.​What are JavaScript generators?
●​ Special functions that allow pausing and resuming execution using yield.
58.​What is this in JavaScript?
●​ this refers to the execution context (object that calls the function).
59.​What is currying in JavaScript?
●​ Transforming a function with multiple arguments into a sequence of functions.
60.​What is a polyfill?
●​ A piece of code that adds modern functionality to older browsers.

11. React.js Advanced Questions

61.​What are React hooks?
●​ Functions like useState, useEffect, and useContext that let you use state and

lifecycle features in functional components.
62.​What is the Virtual DOM?
●​ A lightweight JavaScript representation of the actual DOM that improves

performance.
63.​What is React Fiber?
●​ A new reconciliation algorithm in React for rendering.
64.​What is the difference between controlled and uncontrolled components?
●​ Controlled: Managed by React state.
●​ Uncontrolled: Uses the DOM for state management.
65.​What is useEffect used for?
●​ Side effects like API calls, subscriptions, and DOM manipulations.
66.​What is context API in React?
●​ A way to share state between components without prop drilling.
67.​What are React Portals?
●​ A way to render components outside the parent hierarchy.
68.​What is the difference between React.Fragment and a <div>?
●​ React.Fragment groups elements without adding an extra DOM node.
69.​What is the difference between SSR (Server-Side Rendering) and CSR

(Client-Side Rendering)?
●​ SSR: Renders on the server, faster initial load.
●​ CSR: Renders in the browser, more dynamic.
70.​What are React Suspense and React Lazy?
●​ Used to load components asynchronously for better performance.

12. Node.js & Backend Questions

71.​What is event-driven programming in Node.js?
●​ A programming paradigm where actions (events) trigger code execution.
72.​What is the difference between process and thread?
●​ Process: An instance of a program.
●​ Thread: A smaller unit of execution within a process.
73.​What is middleware in Express.js?
●​ Functions that process requests before they reach the final handler.
74.​What is a stream in Node.js?
●​ A way to handle I/O efficiently using chunks.
75.​What is the difference between blocking and non-blocking I/O?
●​ Blocking I/O waits for an operation to complete.
●​ Non-blocking I/O allows other operations to continue.
76.​What is clustering in Node.js?
●​ Running multiple instances of Node.js to use multi-core CPUs.
77.​What is the difference between synchronous and asynchronous execution in

Node.js?
●​ Synchronous: Executes in sequence, blocking further execution.
●​ Asynchronous: Executes tasks independently without blocking.
78.​What is the difference between fs.readFileSync() and fs.readFile()?
●​ readFileSync() is synchronous, readFile() is asynchronous.
79.​What is REST vs GraphQL?
●​ REST: Uses fixed endpoints for structured data retrieval.
●​ GraphQL: Allows flexible queries on a single endpoint.
80.​What is WebSocket?
●​ A full-duplex communication protocol for real-time apps.

13. Security Questions

81.​What is XSS (Cross-Site Scripting)?
●​ Injecting malicious scripts into web applications.
82.​What is CSRF (Cross-Site Request Forgery)?
●​ Attacker tricks a user into making an unwanted request.
83.​What is SQL Injection?
●​ Injecting malicious SQL queries into databases.
84.​What is HTTPS vs HTTP?
●​ HTTPS encrypts data, HTTP does not.
85.​How does OAuth work?
●​ A secure way to authenticate users via third-party providers.
86.​What is a Same-Origin Policy?
●​ A security feature that blocks scripts from different origins.
87.​What is Two-Factor Authentication (2FA)?
●​ A security method requiring two types of verification.
88.​What are security headers in HTTP?
●​ Headers like Content-Security-Policy and X-Frame-Options.
89.​What is rate limiting?

●​ Restricting the number of requests to prevent abuse.
90.​What is an SSL/TLS certificate?
●​ Encrypts communication between a client and a server.

14. DevOps & Deployment

91.​What is Docker?
●​ A tool for creating and managing lightweight, portable containers.
92.​What is CI/CD?
●​ Continuous Integration and Continuous Deployment for automated testing and

releases.
93.​What is the difference between a monolithic and microservices architecture?
●​ Monolithic: All features in one codebase.
●​ Microservices: Separate services for different features.
94.​What is a load balancer?
●​ Distributes traffic across multiple servers.
95.​What is Kubernetes?
●​ A system for automating containerized applications.
96.​What is the difference between Git and GitHub?
●​ Git: A version control system.
●​ GitHub: A platform for hosting Git repositories.
97.​What is Jenkins?
●​ A CI/CD automation server.
98.​What is WebAssembly?
●​ A binary format for running code in the browser.
99.​What is GraphQL?
●​ A query language for APIs.
100.​ What is the difference between SOAP and REST APIs?
●​ SOAP: XML-based, strict protocol.
●​ REST: Flexible, JSON-based.

	1. HTML Questions
	2. CSS Questions
	●​1. HTML & CSS Coding Questions
	●​11: Create a simple responsive navigation bar using HTML & CSS.
	●​12: Center a div both vertically and horizontally.
	●​13: Create a button with a hover effect using CSS.

	●​2. JavaScript Coding Questions
	●​14: Reverse a string in JavaScript.
	●​15: Find the largest number in an array.
	●​16: Check if a number is prime.
	●​17: Write a function to remove duplicates from an array.
	●​18: Find the factorial of a number using recursion.
	●​19: FizzBuzz Problem
	●​20: Find missing number in an array.

	●​3. React.js Coding Questions
	●​21: Create a simple React component that displays a button and a counter.
	●​22: Fetch data from an API and display it in React.
	●​23: Create a to-do list in React.

	●​4. Node.js & Backend Coding Questions
	●​24: Create a simple Express.js server.
	●​25: Create a simple API endpoint using Express.js.
	●​26: Connect to MongoDB using Mongoose.
	●​27: Hash a password using bcrypt.
	●​28: Implement JWT authentication.
	3. JavaScript Questions
	8. General Web Development Questions
	9. Web Performance & Optimization Questions
	10. JavaScript Advanced Concepts
	11. React.js Advanced Questions
	12. Node.js & Backend Questions
	13. Security Questions
	14. DevOps & Deployment

