
C interview questions and answers

1.​ What is C?

○​ C is a general-purpose programming language developed by Dennis
Ritchie at Bell Labs in 1972. It is widely used for system programming and
developing operating systems.

2.​ What are the key features of C?

○​ Fast execution, structured programming, rich library support, portability,
and flexibility.

3.​ What is the difference between C and C++?

○​ C is a procedural language, while C++ supports both procedural
and object-oriented programming.

4.​ What is a compiler?

○​ A compiler is a program that translates C source code into machine code.
5.​ What is the difference between a compiler and an interpreter?

○​ A compiler translates the entire code at once, while an interpreter

translates code line by line.

Data Types and Variables

6.​ What are the basic data types in C?

○​ int, float, char, double, and void.
7.​ What is the size of an int?

○​ Typically 4 bytes, but it depends on the system.

8.​ What is the difference between signed and unsigned integers?

○​ Signed integers can store negative values, whereas unsigned integers
can only store positive values.

9.​ What is a pointer?

○​ A pointer is a variable that stores the memory address of another variable.
10.​What is the difference between float and double?

○​ float has 6-7 decimal precision, while double has 15-16 decimal

precision.

Operators and Expressions

11.​What are the different types of operators in C?

○​ Arithmetic, relational, logical, bitwise, assignment, and special operators.
12.​What is the modulus operator (%) used for?

○​ It returns the remainder of a division operation.

13.​What is the difference between = and ==?

○​ = is an assignment operator, while == is a comparison operator.
14.​What is a ternary operator?

○​ condition ? expression1 : expression2 is a shorthand for

if-else.
15.​What is the difference between pre-increment and post-increment?

○​ ++i increments before use, while i++ increments after use.

Control Flow

16.​What are conditional statements in C?

○​ if, if-else, else-if, and switch.

17.What is the syntax of a switch statement?

switch(expression)

{ case value1:
//

code
break;

case value2:
//

code
break;

default:
// code

}

17.​What is the difference between for, while, and do-while loops?

○​ for: Initialization, condition, and increment in one line.

○​ while: Checks condition before execution.
○​ do-while: Executes at least once before checking the condition.

20.Write a C program to print numbers from 1 to 10 using a for loop.

#include
<stdio.h> int
main() {

for(int i = 1; i <= 10; i++) {
printf("%d\n", i);

}
return 0;

}

​

Functions

18.​What is a function in C?

○​ A function is a block of code designed to perform a specific task.
19.​What are function prototypes?

○​ A function declaration before its definition.

20.​What is recursion?

○​ A function that calls itself.

24.Write a recursive function for factorial.

int factorial(int n) {

if(n == 0) return 1;
return n * factorial(n - 1);

}

​
21.​What is the difference between call by value and call by reference?

○​ Call by value passes a copy of the argument, while call by reference

passes the memory address.

Pointers and Arrays

22.​What is a NULL pointer?

○​ A pointer that does not point to any memory location.

​
23.​What is a pointer to a pointer?

○​ A pointer that stores the address of another pointer.

24.​What is a dangling pointer?

○​ A pointer that points to a deallocated memory location.

Structures and Unions

25.​What is a structure in C?

○​ A user-defined data type that groups variables.
26.​What is the difference between struct and union?

○​ struct allocates memory for all members, union shares memory

among members.

Memory Management

27.​What is malloc()?

○​ Allocates memory dynamically.
28.​What is free()?

○​ Deallocates memory allocated by malloc().

File Handling

29.​What are the file handling functions in C?
○​ fopen(), fclose(), fscanf(), fprintf(), fgets(), fputs().

Advanced C Concepts

30.​What are macros in C?

○​ Preprocessor directives using #define.
31.​What is the use of typedef?

○​ Used to define new names for data types.

32.​What is an enum in C?

○​ A user-defined data type for constants.
33.​What are header files?

○​ Files that contain function declarations and macros.

34.​What is volatile in C?

○​ It prevents compiler optimization for a variable.

Here are the remaining 60 C interview questions along with their answers:

Memory Management (Continued)

35.​What is calloc()?

○​ calloc() allocates memory for multiple blocks and initializes them to zero.
36.​What is realloc()?

○​ realloc() changes the size of an allocated memory block.

37.​What happens if free() is called twice on the same pointer?

○​ It may cause undefined behavior or program crash.
38.​What is memory leak?

○​ When dynamically allocated memory is not freed, causing memory wastage.

39.​How can you avoid memory leaks in C?

○​ Always free allocated memory using free() before losing its reference.

Strings in C

46.How do you declare a string in C?
char str[] = "Hello";

47.​What is strlen() used for?

○​ Returns the length of a string.
48.​What is strcpy() used for?

○​ Copies one string into another.

49.​What is the difference between strcat() and strncat()?

○​ strcat() appends the full string, strncat() appends a limited number
of characters.

50.​How do you compare two strings in C?

○​ Using strcmp(str1, str2).

Preprocessor Directives

51.​What is #define in C?

○​ Used to define macros.
52.​What is #include?

○​ Used to include header files.

53.​What is the difference between #include <filename> and
#include "filename"?

○​ <filename> searches in standard directories, "filename" searches in

the current directory first.
54.​What is #ifdef used for?

○​ Checks if a macro is defined.

55.​What is the purpose of #pragma?

○​ Used for compiler-specific instructions.

Bitwise Operators

56.​What are bitwise operators in C?

○​ & (AND), | (OR), ^ (XOR), ~ (NOT), << (left shift), >> (right shift).
57.​What does x << 1 do?

○​ Multiplies x by 2.

58.​What does x >> 1 do?

○​ Divides x by 2.
59.​What is bit masking?

○​ Using bitwise operations to set, clear, or toggle specific bits.

60.Write a program to check if a number is even or odd using bitwise operators.

#include

<stdio.h> int

main() {

int num;

printf("Enter a number: ");

scanf("%d", &num);

if (num & 1)

printf("Odd\n");

else

printf("Even\n");

return 0;

}

​

Structures and Unions (Continued)

61.How do you declare a structure?

struct Student {

char

name[50]; int

age;

};

​
62.How do you access structure members?

○​ Using the dot operator (student.age).

63.How do you pass a structure to a function?

void display(struct Student s) { printf("%s %d", s.name, s.age); }

64.How do you allocate memory dynamically for a structure?
struct Student *s = (struct Student*)malloc(sizeof(struct Student));

65.​What is the difference between structure and class (in C++)?

○​ Structures have public access by default, whereas classes have
private access by default.

File Handling (Continued)

What is the syntax of fopen()?

FILE *fp = fopen("file.txt", "r");

​
66.​What are different file modes in C?

○​ "r", "w", "a", "r+", "w+", "a+".

67.​How do you read a file in C?

○​ Using fscanf(), fgets(), fgetc().
68.​How do you write to a file in C?

○​ Using fprintf(), fputs(), fputc().

70.How do you close a file?

fclose(fp)

​

Advanced C Concepts

71.What is an enum?

enum Days { MON, TUE, WED };

72.What is a function pointer?
void

(*func_ptr)(int);

73.​What is a volatile variable?

○​ Prevents compiler optimizations.
74.​What is a static variable?

○​ Retains its value across function calls.

75.​What is the const keyword?

○​ Declares a variable as read-only.

Common Mistakes in C

76.​What happens if a pointer is not initialized?

○​ It may cause undefined behavior.
77.​What is an off-by-one error?

○​ A common error in loops or array indexing.

78.​What happens if you access an array out of bounds?

○​ May cause segmentation fault.
79.​What happens if a function is declared but not defined?

○​ Linker error.

80.​What happens if return is missing in a non-void function?

○​ Undefined behavior.

Multithreading and Concurrency

81.​Does C support multithreading natively?

○​ No, but we can use pthread library.

82.How do you create a thread in C?
pthread_create(&thread, NULL, function, NULL);

83.​What is a mutex?

○​ A lock mechanism to prevent race conditions.
84.​What is a race condition?

○​ When multiple threads access shared data incorrectly.

85.​What is deadlock?

○​ When two or more threads are stuck waiting for each other.

Debugging and Optimization

86.​What is gdb?

○​ A debugger for C programs.
87.​How do you use printf() for debugging?

○​ Print variable values during execution.

88.​What is valgrind?

○​ A tool for memory leak detection.
89.​How do you optimize C code?

○​ Using efficient algorithms, compiler optimizations, and reducing

memory usage.
90.​What is the purpose of inline functions?

○​ Reduces function call overhead.

Miscellaneous Questions

91.​What is the output of printf("%d", sizeof(int));?

○​ 4 (on most systems).
92.​What is an lvalue and an rvalue?

○​ lvalue: Can be assigned to.
○​ rvalue: Cannot be assigned to.

93.​How do you implement a stack in C?

○​ Using arrays or linked lists.
94.​What is a segmentation fault?

○​ Accessing invalid memory.

95.​How do you reverse a string in C?

○​ Using a loop or recursion.

96.​Factorial of a Number

#include <stdio.h>

long long factorial(int n) {

if (n == 0) return 1;

return n * factorial(n - 1);

}

int main() {

int num;

printf("Enter a number: ");

scanf("%d", &num);

printf("Factorial of %d is %lld\n", num, factorial(num));

return 0;

}

✅ Explanation:

●​ Uses recursion to calculate factorial (n! = n * (n-1)!).
●​ If n == 0, it returns 1 (base case).
●​ Otherwise, it keeps calling itself with n-1 until reaching 0.

97.​Fibonacci Series

#include <stdio.h>

void fibonacci(int n) {

int a = 0, b = 1,

next;

printf("Fibonacci Series: %d %d ", a, b);

for (int i = 2; i < n; i++) {

next = a + b;

printf("%d ", next);

a = b;

b = next;

}

}

int main() {

int n;

printf("Enter the number of terms: ");

scanf("%d", &n);

fibonacci(n);

return 0;

}

✅ Explanation:

●​ Uses iteration to generate n Fibonacci numbers.
●​ Starts with 0 and 1, then calculates next = a + b.
●​ Updates a and b in each iteration.

98.​Palindrome Number Check

#include <stdio.h>

int isPalindrome(int num) {

int rev = 0, original = num, remainder;

while (num > 0) {

remainder = num % 10;

rev = rev * 10 +

remainder; num /= 10;

}

return original == rev;

}

int main() {

int num;

printf("Enter a number: ");

scanf("%d", &num);

if (isPalindrome(num))

printf("%d is a Palindrome\n", num);

else

printf("%d is not a Palindrome\n", num);

return 0;

}

✅ Explanation:

●​ Reverses the number and checks if the original and reversed numbers are the same.
●​ Uses a loop to extract digits and build the reversed number.

99.​Swapping Two Numbers (Using a Third Variable)

#include <stdio.h>

int main() {

int a, b, temp;

printf("Enter two numbers: ");

scanf("%d %d", &a, &b);

temp = a;

a = b;

b = temp;

printf("After swap: a = %d, b = %d\n", a, b);

return 0;

}

✅ Explanation:

●​ Uses a temporary variable to swap values.
●​ temp stores a, then a = b and b = temp.

100.​Swapping Two Numbers (Without Using a Third Variable)

#include <stdio.h>

int main() {

int a, b;

printf("Enter two numbers: ");

scanf("%d %d", &a, &b);

a = a + b;

b = a - b;

a = a - b;

printf("After swap: a = %d, b = %d\n", a, b);

return 0;

}

✅ Explanation:

●​ Uses arithmetic operations to swap values without extra memory.
●​ Addition and subtraction are used to swap values logically.

C++ interview questions and answers

1. What is C++?

○ C++ is a general-purpose, object-oriented programming
language that extends C with additional features such as classes,
objects, and polymorphism.

2. What are the key features of C++?

○ Object-oriented, platform-independent, rich standard library,
memory management, and strong type checking.

3. What is the difference between C and C++?

○ C is procedural, while C++ supports object-oriented programming.
C++ has features like classes, polymorphism, and exception handling.

4. What is a class in C++?

○ A class is a blueprint for creating objects. It defines data
members and member functions.

5. What is an object in C++?

○ An object is an instance of a class.

6.

What are access specifiers in C++?

○ Public, private, and protected.

7. What is a constructor?

○ A constructor is a special function that initializes an object when it is
created.

8. What is a destructor?

○ A destructor is a special function that is automatically called when an
object goes out of scope.

9. What is function overloading?

○ Function overloading allows multiple functions with the same
name but different parameters.

10. What is operator overloading?

○ Operator overloading allows defining new meanings for existing
operators.

11. What is inheritance in C++?

○ Inheritance allows a class (child) to derive properties from another
class (parent).

12. What is polymorphism?

○ Polymorphism allows functions to behave differently based on the
object calling them.

13. What is encapsulation?

○ Encapsulation binds data and functions into a single unit.

14. What is abstraction?

○ Abstraction hides implementation details from the user.
15. What is a virtual function?

○ A virtual function is a function in a base class that can be
overridden in a derived class.

16. What is pure virtual function?

○ A pure virtual function has = 0 in its declaration and forces derived
classes to implement it.

17. What is an abstract class?

○ A class with at least one pure virtual function.
18. What is multiple inheritance?

○ Multiple inheritance allows a class to inherit from more than one base
class.

19. What is the difference between struct and class in C++?

○

struct members are public by default, while class members are private
by default.

20. What is a reference variable in C++?

○ A reference variable is an alias for another variable.

21. What is the ‘this’ pointer?

○ The this pointer refers to the calling object.

22. What is the difference between new and malloc?

○ new initializes objects, while malloc does not.

23. What is a static member function?

○ A static function belongs to the class, not an object.

24. What is a namespace in C++?

○ A namespace prevents naming conflicts.

25. What is the difference between endl and \n?

○ endl flushes the output buffer, while \n does not.

​

Intermediate Level (26-50)
26. What is a friend function?

○ A function that can access private members of a class.

27. What is the difference between deep copy and shallow copy?

○ Deep copy duplicates dynamically allocated memory; shallow
copy only copies pointers.

28. What is an inline function?

○ An inline function is expanded in place to reduce function call overhead.

29. What is a copy constructor?

○ A copy constructor initializes an object using another object of the
same class.

30. What is the difference between const int *ptr and int *const ptr?

○ const int *ptr means the value is constant; int *const ptr
means the pointer is constant.

31. What are function pointers?

○ Function pointers store addresses of functions.

32. What is exception handling?

○

Handling runtime errors using try, catch, and throw.

33. What is RAII (Resource Acquisition Is Initialization)?

○ A technique where resources are allocated in constructors and
released in destructors.

34. What is a template in C++?

○ A template allows writing generic code for multiple data types.
35. What are smart pointers?

○ Smart pointers manage dynamic memory automatically.

36. What is the Standard Template Library (STL)?

○ A collection of classes and functions for data structures and algorithms.

37. What are iterators in C++?

○ Iterators provide a way to traverse STL containers.

38. What is std::vector?

○ A dynamic array implementation in STL.

39. What is the difference between map and unordered_map?

○ map is ordered (RB Tree), while unordered_map is unordered (Hash
Table).

40. What is std::pair in C++?

○ A pair stores two values of different types.

41. What is lambda expression?

○ A lambda is an anonymous function.
42. What is std::unique_ptr?

○ A smart pointer for unique ownership.

43. What is std::shared_ptr?

○ A smart pointer for shared ownership.

44. What is std::weak_ptr?

○ A weak reference to avoid circular dependencies.

45. What is std::move?

○ std::move transfers ownership of resources.

46. What is move semantics?

○ Move semantics allow efficient resource transfer.

47. What is the difference between ++i and i++?

○​ ++i increments before use; i++ increments after use.
48. What is volatile keyword?

○ volatile tells the compiler not to optimize variable access.

49. What is memory leak?

○ A memory leak occurs when allocated memory is not deallocated.

50. What is delete operator in C++?

○ It deallocates memory allocated using new.

51. Smart Pointers
❓ What is std::unique_ptr? How do you use it?

✅ Answer: std::unique_ptr ensures exclusive ownership of dynamically allocated

objects.

#include <iostream>
#include <memory>

class Example {
public:

Example() { std::cout << "Constructor\n"; }

~Example() { std::cout << "Destructor\n"; }

};

int main() {
std::unique_ptr<Example> ptr = std::make_unique<Example>(); return 0;

}

​

52. std::shared_ptr Usage

❓ What is std::shared_ptr? Demonstrate usage.

✅ Answer: std::shared_ptr allows multiple owners of a single object. #include

<iostream>

#include <memory>

class Example {
public:

Example() { std::cout << "Constructor\n"; }

~Example() { std::cout << "Destructor\n"; }
};

int main() {

std::shared_ptr<Example> ptr1 = std::make_shared<Example>();
std::shared_ptr<Example> ptr2 = ptr1;

return 0;

}

​

53. std::weak_ptr and Circular References

❓ Why use std::weak_ptr?

✅ Answer: Prevents circular references in std::shared_ptr.

#include <iostream>
#include <memory>

class A { public:

std::shared_ptr<A> self;

~A() { std::cout << "Destructor called\n"; }
};

int main() {

std::shared_ptr<A> obj = std::make_shared<A>();
obj->self = obj; // Circular reference leads to memory leak

}

👉 Fix: Use std::weak_ptr.

​

54. Custom Deleter in Smart Pointer
#include <iostream>
#include <memory>

struct Free {

void operator()(int* ptr) {
std::cout << "Custom Deleter called\n";
delete ptr;

}

};

int main() {
std::unique_ptr<int, Free> ptr(new int(42));
return 0;

}

​

55. Implement a Singleton Pattern
#include <iostream>

class Singleton {
public:

static Singleton& getInstance() {
static Singleton instance;
return instance;

}

void show() { std::cout << "Singleton Instance\n"; }
private:

Singleton() {}

Singleton(const Singleton&) = delete;
Singleton& operator=(const Singleton&) = delete;

};

int main() {
Singleton::getInstance().show();

}

56. Using std::future and std::async
#include <iostream>
#include <future>

int compute()
{ return 42;

}

int main() {

std::future<int> f = std::async(std::launch::async, compute); std::cout <<
"Result: " << f.get() << "\n";

}

​

57. Implementing a Thread-safe Singleton
#include <iostream>
#include <mutex>

class ThreadSafeSingleton { public:
static ThreadSafeSingleton& getInstance() {

static ThreadSafeSingleton instance;
return instance;

}

private:
ThreadSafeSingleton() = default;
ThreadSafeSingleton(const ThreadSafeSingleton&) = delete; ThreadSafeSingleton&
operator=(const ThreadSafeSingleton&) = delete;

};

int main() {
ThreadSafeSingleton& obj = ThreadSafeSingleton::getInstance();

}

​

58. Implementing RAII for File Handling
#include <iostream>
#include <fstream>

class FileHandler {
std::ofstream
file;

public:

FileHandler(const std::string& filename) {

file.open(filename);

}

~FileHandler(
) {
file.close();

}

};

int main() {

FileHandler fh("test.txt");
}

​

59. Using std::variant for Type Safety
#include <iostream>
#include <variant>

int main() {

std::variant<int, double, std::string> var; var =
"Hello";

std::cout << std::get<std::string>(var) << "\n";

}

​

60. Implementing Producer-Consumer using
std::condition_variable

#include <iostream>
#include <thread>
#include <queue>

#include <condition_variable>

std::queue<int> q;
std::mutex mtx;
std::condition_variable cv;
bool done = false;

void producer() {

for (int i = 0; i < 5; ++i) {
std::unique_lock<std::mutex> lock(mtx);
q.push(i);

cv.notify_one();

}
done = true;
cv.notify_all();

}

void consumer() {
while (true) {
std::unique_lock<std::mutex> lock(mtx);
cv.wait(lock, [] { return !q.empty() || done; }); if
(!q.empty()) {

std::cout << "Consumed: " << q.front() << "\n";
q.pop();
} else if (done)

{ break;

}

}
}

int main() {

std::thread t1(producer);
std::thread t2(consumer);

t1.join();

t2.join();

}

​

61.

Using std::transform for Function Application
#include <iostream>
#include <vector>
#include <algorithm>

int main() {

std::vector<int> v = {1, 2, 3, 4};
std::transform(v.begin(), v.end(), v.begin(), [](int x) { return x * x; }); for (int
n : v) std::cout << n << " ";

}

​

62. Implementing a Custom Allocator
#include <iostream>
#include <memory>

template <typename T>
struct CustomAllocator {

T* allocate(size_t n) {

return static_cast<T*>(::operator new(n * sizeof(T)));
}

void deallocate(T* p, size_t) {

::operator delete(p);
}

};

int main() {

CustomAllocator<int> allocator;
int* ptr = allocator.allocate(5);
allocator.deallocate(ptr, 5);

}

​

63. Using std::optional to Handle Nullable Values
#include <iostream>
#include <optional>

std::optional<int> findValue(bool found) { if
(found) return 42;

return std::nullopt;

}

int main() {

auto val = findValue(true);
if (val) std::cout << "Value: " << val.value() << "\n";

}

Here are 64-100 advanced C++ interview questions with answers, covering STL, memory
management, multithreading, smart pointers, design patterns, templates, and more.

​

📌 Memory Management & Pointers
64. What is memory alignment in C++?
✅ Answer: Memory alignment ensures that variables are stored in memory at addresses
that are multiples of their size, improving CPU efficiency.
#include <iostream>

struct Aligned {

char a; // 1 byte

int b; // 4 bytes
double c; // 8 bytes

}; // Struct size will be 16 due to padding.

int main() {

std::cout << "Size of Aligned: " << sizeof(Aligned) << std::endl;
}

​

65. What is placement new?
✅ Answer: Placement new allows constructing an object in pre-allocated memory. #include

<iostream>

int main() {
char buffer[sizeof(int)];
int* p = new (buffer) int(42); // Placement new
std::cout << *p << std::endl;

}

66.

What is the difference between new and malloc?
✅ Answer:

● new calls the constructor, while malloc does not.
● new returns the correct type, malloc returns void*.

📌 Advanced Object-Oriented
Programming (OOP)
67. What is slicing in C++?
✅ Answer: Object slicing happens when a derived class object is assigned to a base class,
losing derived-specific data.

#include <iostream>

class Base { public: int x = 10; };

class Derived : public Base { public: int y = 20; };

int main() {
Derived
d;

Base b = d; // Object slicing: `b` loses `y`

}

68. What is the difference between static and dynamic
polymorphism?

✅ Answer:

● Static Polymorphism: Function overloading, operator overloading,
templates.
● Dynamic Polymorphism: Virtual functions, runtime method overriding.

📌 Multithreading & Concurrency
69. How does std::mutex prevent race conditions?
✅ Answer: std::mutex ensures only one thread accesses shared data at a time.

#include <iostream>

#include <thread>
#include <mutex>

std::mutex mtx;
int counter = 0;

void increment() {
std::lock_guard<std::mutex> lock(mtx);
counter++;

}

int main() {

std::thread t1(increment);
std::thread t2(increment);
t1.join();

t2.join();

std::cout << "Counter: " << counter << std::endl;
}

70. What is std::atomic and how does it work?

✅ Answer: std::atomic ensures atomic operations without using locks. #include

<iostream>

#include <atomic>

std::atomic<int> count(0);

void increment() {
count.fetch_add(1, std::memory_order_relaxed);

}

int main() {
increment();

std::cout << "Count: " << count.load() << std::endl;

}

71. What is std::condition_variable?
✅ Answer: std::condition_variable allows a thread to wait for a condition. #include

<iostream>

#include <thread>
#include <mutex>

#include <condition_variable>

std::mutex mtx;
std::condition_variable cv;
bool ready = false;

void waitForEvent() {
std::unique_lock<std::mutex> lock(mtx);
cv.wait(lock, [] { return ready; });

std::cout << "Event received!" << std::endl;

}

void signalEvent() { std::this_thread::sleep_for(std::chrono::seconds(1));
std::lock_guard<std::mutex> lock(mtx);

ready = true;
cv.notify_one();

}

int main() {

std::thread t1(waitForEvent);
std::thread t2(signalEvent);
t1.join();

t2.join();

}

📌 STL & Advanced Data Structures
72. What is std::map and how is it implemented?
✅ Answer: std::map is implemented as a Red-Black Tree (self-balancing BST). #include

<iostream>

#include <map>

int main() {

std::map<int, std::string> m; m[1]
= "One";

m[2] = "Two";

for (auto& p : m)
std::cout << p.first << ": " << p.second << std::endl;

}

73. What is std::unordered_map and how is it
implemented?
✅ Answer: std::unordered_map is implemented using a Hash Table, giving O(1)

average time complexity for lookups.

#include <iostream> #include
<unordered_map>

int main() {

std::unordered_map<int, std::string> um; um[1]
= "One";
um[2] = "Two"; for
(auto& p : um)

std::cout << p.first << ": " << p.second << std::endl;

}

📌 Design Patterns
74. Implement a Factory Pattern in C++
#include <iostream>

class Animal { public:

virtual void speak() = 0;

};

class Dog : public Animal {
public:

void speak() override { std::cout << "Bark!" << std::endl; }

};

class AnimalFactory { public:

static Animal* createAnimal() { return new Dog(); }

};

int main() {

Animal* animal = AnimalFactory::createAnimal();

animal->speak();

delete animal;

}

75. Implement the Observer Pattern in C++
#include <iostream>
#include <vector>

class Observer {
public:

virtual void notify() = 0;

};

class Subject {
std::vector<Observer*> observers;

public:

void addObserver(Observer* obs) { observers.push_back(obs); } void
notifyAll() {

for (auto obs : observers) obs->notify();

}
};

class ConcreteObserver : public Observer { public:

void notify() override { std::cout << "Notified!" << std::endl; }

};

int main() {
Subject
subject;

ConcreteObserver obs;
subject.addObserver(&obs); subject.notifyAll();

}

📌 Advanced C++ Features
76. What is std::any and how is it used?
✅ Answer: std::any can hold any data type.

#include <iostream>

#include <any>

int main() {

std::any data = 42;
std::cout << std::any_cast<int>(data) << std::endl;

}

77.

What is std::variant and why use it?
✅ Answer: std::variant is a type-safe union. #include

<iostream>

#include <variant>

int main() {
std::variant<int, double, std::string> var = "Hello";
std::cout << std::get<std::string>(var) << std::endl;

}

Here are 23 advanced C++ interview questions and answers (78-100) covering
multithreading, memory management, STL, design patterns, and modern C++
features.

🔹78. What is the difference between std::function
and function pointers?
✅ Answer:

● ​ std::function is a wrapper for callable objects, including
lambda expressions, function pointers, and functors.

● Function pointers only store addresses of functions.

#include <iostream>
#include <functional>
void func(int x) { std::cout << "Function: " << x << "\n"; } int

main() {

std::function<void(int)> f = func; // std::function

void (*ptr)(int) = func; ​// Function pointer

f(10);

ptr(20);
}

🔹79. What is std::bind, and how does it work?
✅ Answer:

●

std::bind binds function arguments and creates a callable object.

#include <iostream>

#include <functional>

void multiply(int a, int b) { std::cout << "Result: " << a * b << "\n"; } int

main() {

auto boundFunc = std::bind(multiply, 10, std::placeholders::_1);
boundFunc(5); // Equivalent to multiply(10, 5);

}

🔹80. How does std::visit work with
std::variant?
✅ Answer:

● std::visit is used to apply a visitor function to

std::variant. #include <iostream>

#include <variant>

int main() {

std::variant<int, double, std::string> var = 10;

std::visit([](auto&& val) { std::cout << "Value: " << val << "\n"; }, var);

}

🔹81. What is the CRTP (Curiously Recurring Template
Pattern)?
✅ Answer:

● ​ CRTP is used to achieve static

polymorphism. #include <iostream>

template <typename T>
class Base {

public:

void interface() { static_cast<T*>(this)->implementation(); }
};

class Derived : public Base<Derived> {
public:

void implementation() { std::cout << "Derived implementation\n"; }

};

int main() {
Derived d;
d.interface();

}

🔹82. What is std::invoke in C++?
✅ Answer:

● std::invoke calls functions, function objects, or member

functions. #include <iostream>

#include <functional>

struct Foo {
int add(int a, int b) { return a + b; }

};

int main() {
Foo obj;

auto result = std::invoke(&Foo::add, obj, 5, 3); std::cout
<< "Result: " << result << "\n";

}

🔹83. How do you implement a thread pool in C++?
✅ Answer:

● Use std::thread, std::mutex,

std::condition_variable. #include <iostream>

#include <thread>

#include <vector>
#include <queue>

#include <functional>

#include <condition_variable>

class ThreadPool { std::vector<std::thread>
workers;
std::queue<std::function<void()>> tasks;
std::mutex queue_mutex;
std::condition_variable condition;

bool stop = false;

public:
ThreadPool(size_t threads);
void enqueue(std::function<void()> task);
~ThreadPool();

};

ThreadPool::ThreadPool(size_t threads) {
for (size_t i = 0; i < threads; ++i) {

workers.emplace_back([this]
{ while (true) {

std::function<void()> task;

{
std::unique_lock<std::mutex> lock(queue_mutex);
condition.wait(lock, [this] { return stop || !tasks.empty(); }); if
(stop && tasks.empty()) return;
task = std::move(tasks.front());
tasks.pop();

}

task();
}

});
}

}

void ThreadPool::enqueue(std::function<void()> task) {

{
std::unique_lock<std::mutex> lock(queue_mutex);
tasks.emplace(std::move(task));

}
condition.notify_one();

}

ThreadPool::~ThreadPool() {

{
std::unique_lock<std::mutex> lock(queue_mutex);
stop = true;

}

condition.notify_all();
for (std::thread &worker : workers)

worker.join();

}

int main() {
ThreadPool
pool(4);

pool.enqueue([] { std::cout << "Task executed\n"; });

}

🔹84. What is the difference between std::mutex,
std::recursive_mutex, and std::shared_mutex?

✅ Answer:

● std::mutex: Basic lock mechanism.
● std::recursive_mutex: Allows reentrant locking by the same thread.
● std::shared_mutex: Allows multiple readers but only one writer.

🔹85. How does std::atomic ensure thread safety?
✅ Answer:

● std::atomic provides atomic operations to prevent data

races. #include <iostream>

#include <atomic>

#include <thread>

std::atomic<int> counter(0);

void increment() {

for (int i = 0; i < 1000; ++i) counter++;
}

int main() {

std::thread t1(increment), t2(increment);
t1.join();

t2.join();

std::cout << "Counter: " << counter << "\n";
}

🔹86. What is std::scoped_lock in C++17?
✅ Answer:

● A safer alternative to std::lock_guard for handling multiple

mutexes. #include <iostream>

#include <mutex>

std::mutex m1, m2;

void safe_function() {

std::scoped_lock lock(m1, m2); std::cout
<< "Thread safe execution\n";

}

🔹87. Explain how std::forward works with perfect

forwarding.
✅ Answer:

● std::forward preserves value category when forwarding function

arguments. #include <iostream>

#include <utility>

template <typename T> void
wrapper(T&& arg) {

process(std::forward<T>(arg));

}

🔹88. Explain Copy Elision in C++.
✅ Answer:

● Optimizes object copying by eliminating unnecessary constructor calls.

struct Test {
Test() { std::cout << "Constructor\n"; }
Test(const Test&) { std::cout << "Copy Constructor\n"; }

};

Test create() {
return Test();

}

int main() {

Test obj = create();
}

🔹89. What is std::optional and when to use it?
✅ Answer:

●

Use std::optional to represent missing values instead of using nullptr.

Here are 10 advanced C++ interview questions and answers (90-100), covering
metaprogramming, STL, multithreading, design patterns, memory management, and modern
C++ features.

90. What is Expression Templates in C++?
✅ Answer: Expression templates enable lazy evaluation and eliminate unnecessary
temporary objects in operations like matrix manipulation or vector arithmetic.

👉 Example:

#include <iostream>
#include <vector>

template <typename L, typename R>
class Add {

const L& lhs; const
R& rhs;

public:

Add(const L& l, const R& r) : lhs(l), rhs(r) {}
auto operator[](size_t i) const { return lhs[i] + rhs[i]; }

};

template <typename L, typename R>

auto operator+(const L& lhs, const R& rhs) {
return Add<L, R>(lhs, rhs);

}

int main() {
std::vector<int> a = {1, 2, 3}, b = {4, 5, 6};
auto result = a + b; // No temporary vector!
std::cout << result[0] << " " << result[1] << " " << result[2] << "\n";

}

91. What are Compile-time and Runtime Polymorphism?
✅ Answer:

● ​ Compile-time: Achieved using function overloading, operator overloading,
and templates.

● Runtime: Achieved using virtual functions and dynamic dispatch.

👉 Example:
#include <iostream>

class Base {

public:

virtual void show() { std::cout << "Base class\n"; }
};

class Derived : public Base { public:

void show() override { std::cout << "Derived class\n"; }

};

int main() {

Base* obj = new Derived();
obj->show(); // Runtime Polymorphism
delete obj;

}

92. What is Type Erasure in C++?
✅ Answer: Type erasure removes type-specific details, allowing polymorphic
behavior without inheritance.

👉 Example Using std::function

#include <iostream>
#include <functional>
void hello() { std::cout << "Hello World\n"; } int

main() {

std::function<void()> func = hello; // Type erased function

func();
}

 Key Concept: std::function<void()> can hold any callable entity.

​

93. How Does std::any Work?

✅ Answer: std::any stores any type but requires explicit casting.

👉 Example:

#include <iostream>
#include <any>

int main() {

std::any data = 42;
std::cout << std::any_cast<int>(data) << "\n";

}

 Key Concept: std::any_cast<T> retrieves stored data.

​

94. Explain std::variant and How It Differs from
std::any

✅ Answer: std::variant holds one type at a time (like a type-safe union).

👉 Example:

#include <iostream>
#include <variant>

int main() {

std::variant<int, std::string> v = "Hello"; std::cout
<< std::get<std::string>(v) << "\n";

}

Key Concept: Use std::get<T>() to retrieve the active type.

​

95. What is std::monostate in std::variant?

✅ Answer: std::monostate is a default type when std::variant may be empty.

👉 Example:

#include <iostream>
#include <variant>
std::variant<std::monostate, int, std::string> v; int

main() {

if (std::holds_alternative<std::monostate>(v))

std::cout << "Variant is empty\n";
}

 Key Concept: Helps when default-initializing a std::variant.

​

96. What is the Curiously Recurring Template Pattern
(CRTP)?
✅ Answer: CRTP allows static polymorphism, avoiding virtual function overhead.

👉 Example:

#include <iostream>

template <typename Derived> class
Base {

public:

void interface() {
static_cast<Derived*>(this)->implementation();

}
};

class Derived : public Base<Derived> {
public:

void implementation() { std::cout << "Derived class method\n"; }

};

int main() {
Derived

d;

d.interface(); // Calls Derived::implementation()

}

Key Concept: Simulates polymorphism at compile-time.

​

97. What is Placement new? Why Use It?

✅ Answer: Placement new constructs an object at a specific memory location.

👉 Example:
#include <iostream>

int main() {

char buffer[sizeof(int)];

int* p = new (buffer) int(42); // Placement new std::cout
<< *p << "\n";

}

🚀 Key Concept: Avoids dynamic memory allocation.

​

98. What is std::launder in C++17?

✅ Answer: std::launder helps access memory safely after placement new.

👉 Example:

#include <iostream>
#include <new>
struct A { int x; };

int main() {

alignas(A) char buffer[sizeof(A)];

A* ptr = new (buffer) A{10};
A* safe_ptr = std::launder(ptr); // Safe access std::cout <<
safe_ptr->x << "\n";

}

🚀 Key Concept: Prevents undefined behavior in memory management.

​

99. What is std::span? How is It Better Than Raw
Arrays?
✅ Answer: std::span is a lightweight view over contiguous data.

👉 Example:

#include <iostream>
#include

void print(std::span<int> arr) {

for (int i : arr) std::cout << i << " ";
}

int main() {

int data[] = {1, 2, 3, 4};
print(data); // No need to pass size

}

🚀 Key Concept: std::span avoids pointer decay issues.

​

100. What is std::forward_list? How is It
Different from std::list?

✅ Answer: std::forward_list is a singly linked list, using less memory than
std::list.

👉 Example:

#include <iostream>
#include <forward_list>

int main() {

std::forward_list<int> fl = {1, 2, 3};
fl.push_front(0); // Efficient insertion for
(int n : fl) std::cout << n << " ";

}

	C interview questions and answers
	1.​What is C?
	2.​What are the key features of C?
	3.​What is the difference between C and C++?
	4.​What is a compiler?
	5.​What is the difference between a compiler and an interpreter?

	Data Types and Variables
	6.​What are the basic data types in C?
	7.​What is the size of an int?
	8.​What is the difference between signed and unsigned integers?
	9.​What is a pointer?
	10.​What is the difference between float and double?

	Operators and Expressions
	11.​What are the different types of operators in C?
	12.​What is the modulus operator (%) used for?
	13.​What is the difference between = and ==?
	14.​What is a ternary operator?
	15.​What is the difference between pre-increment and post-increment?

	Control Flow
	16.​What are conditional statements in C?
	17.What is the syntax of a switch statement?
	17.​What is the difference between for, while, and do-while loops?
	20.Write a C program to print numbers from 1 to 10 using a for loop.

	Functions
	18.​What is a function in C?
	19.​What are function prototypes?
	20.​What is recursion?
	24.Write a recursive function for factorial.
	21.​What is the difference between call by value and call by reference?

	Pointers and Arrays
	22.​What is a NULL pointer?
	23.​What is a pointer to a pointer?
	24.​What is a dangling pointer?

	Structures and Unions
	25.​What is a structure in C?
	26.​What is the difference between struct and union?

	Memory Management
	27.​What is malloc()?
	28.​What is free()?

	File Handling
	29.​What are the file handling functions in C?

	Advanced C Concepts
	30.​What are macros in C?
	31.​What is the use of typedef?
	32.​What is an enum in C?
	33.​What are header files?
	34.​What is volatile in C?

	Memory Management (Continued)
	35.​What is calloc()?
	36.​What is realloc()?
	37.​What happens if free() is called twice on the same pointer?
	38.​What is memory leak?
	39.​How can you avoid memory leaks in C?

	Strings in C
	46.How do you declare a string in C?
	47.​What is strlen() used for?
	48.​What is strcpy() used for?
	49.​What is the difference between strcat() and strncat()?
	50.​How do you compare two strings in C?

	Preprocessor Directives
	51.​What is #define in C?
	52.​What is #include?
	53.​What is the difference between #include <filename> and #include "filename"?
	54.​What is #ifdef used for?
	55.​What is the purpose of #pragma?

	Bitwise Operators
	56.​What are bitwise operators in C?
	57.​What does x << 1 do?
	58.​What does x >> 1 do?
	59.​What is bit masking?
	60.Write a program to check if a number is even or odd using bitwise operators.

	Structures and Unions (Continued)
	61.How do you declare a structure?
	62.How do you access structure members?
	63.How do you pass a structure to a function?
	64.How do you allocate memory dynamically for a structure?
	65.​What is the difference between structure and class (in C++)?
	66.​What are different file modes in C?
	67.​How do you read a file in C?
	68.​How do you write to a file in C?
	70.How do you close a file?

	Advanced C Concepts
	71.What is an enum?
	72.What is a function pointer?
	73.​What is a volatile variable?
	74.​What is a static variable?
	75.​What is the const keyword?

	Common Mistakes in C
	76.​What happens if a pointer is not initialized?
	77.​What is an off-by-one error?
	78.​What happens if you access an array out of bounds?
	79.​What happens if a function is declared but not defined?
	80.​What happens if return is missing in a non-void function?

	Multithreading and Concurrency
	81.​Does C support multithreading natively?
	82.How do you create a thread in C?
	83.​What is a mutex?
	84.​What is a race condition?
	85.​What is deadlock?

	Debugging and Optimization
	86.​What is gdb?
	87.​How do you use printf() for debugging?
	88.​What is valgrind?
	89.​How do you optimize C code?
	90.​What is the purpose of inline functions?

	Miscellaneous Questions
	91.​What is the output of printf("%d", sizeof(int));?
	92.​What is an lvalue and an rvalue?
	93.​How do you implement a stack in C?
	94.​What is a segmentation fault?
	95.​How do you reverse a string in C?

	96.​Factorial of a Number
	✅ Explanation:

	97.​Fibonacci Series
	✅ Explanation:

	98.​Palindrome Number Check
	✅ Explanation:

	99.​Swapping Two Numbers (Using a Third Variable)
	✅ Explanation:

	100.​Swapping Two Numbers (Without Using a Third Variable)
	✅ Explanation:

	C++ interview questions and answers
	Intermediate Level (26-50)
	51. Smart Pointers
	52. std::shared_ptr Usage
	53. std::weak_ptr and Circular References
	54. Custom Deleter in Smart Pointer
	55. Implement a Singleton Pattern
	56. Using std::future and std::async
	57. Implementing a Thread-safe Singleton
	58. Implementing RAII for File Handling
	59. Using std::variant for Type Safety
	60. Implementing Producer-Consumer using
	61.
	Using std::transform for Function Application
	62. Implementing a Custom Allocator
	63. Using std::optional to Handle Nullable Values

	📌 Memory Management & Pointers
	64. What is memory alignment in C++?
	65. What is placement new?
	66.
	What is the difference between new and malloc?

	📌 Advanced Object-Oriented Programming (OOP)
	67. What is slicing in C++?
	68. What is the difference between static and dynamic polymorphism?

	📌 Multithreading & Concurrency
	69. How does std::mutex prevent race conditions?
	70. What is std::atomic and how does it work?
	71. What is std::condition_variable?

	📌 STL & Advanced Data Structures
	72. What is std::map and how is it implemented?
	73. What is std::unordered_map and how is it implemented?

	📌 Design Patterns
	74. Implement a Factory Pattern in C++
	75. Implement the Observer Pattern in C++

	📌 Advanced C++ Features
	76. What is std::any and how is it used?
	77.
	What is std::variant and why use it?
	🔹78. What is the difference between std::function and function pointers?
	🔹79. What is std::bind, and how does it work?
	🔹80. How does std::visit work with std::variant?
	🔹81. What is the CRTP (Curiously Recurring Template Pattern)?
	🔹82. What is std::invoke in C++?
	🔹83. How do you implement a thread pool in C++?
	🔹84. What is the difference between std::mutex, std::recursive_mutex, and std::shared_mutex?
	🔹85. How does std::atomic ensure thread safety?
	🔹86. What is std::scoped_lock in C++17?
	🔹87. Explain how std::forward works with perfect forwarding.
	🔹88. Explain Copy Elision in C++.
	🔹89. What is std::optional and when to use it?
	90. What is Expression Templates in C++?
	91. What are Compile-time and Runtime Polymorphism?
	92. What is Type Erasure in C++?
	93. How Does std::any Work?
	94. Explain std::variant and How It Differs from std::any
	95. What is std::monostate in std::variant?
	96. What is the Curiously Recurring Template Pattern (CRTP)?
	97. What is Placement new? Why Use It?
	98. What is std::launder in C++17?
	99. What is std::span? How is It Better Than Raw Arrays?
	100. What is std::forward_list? How is It Different from std::list?

