
C interview questions and answers

1. What is C?

○ C is a general-purpose programming language developed by Dennis
Ritchie at Bell Labs in 1972. It is widely used for system programming and
developing operating systems.

2. What are the key features of C?

○ Fast execution, structured programming, rich library support, portability,
and flexibility.

3. What is the difference between C and C++?

○ C is a procedural language, while C++ supports both procedural
and object-oriented programming.

4. What is a compiler?

○ A compiler is a program that translates C source code into machine code.
5. What is the difference between a compiler and an interpreter?

○ A compiler translates the entire code at once, while an interpreter

translates code line by line.

Data Types and Variables

6. What are the basic data types in C?

○ int, float, char, double, and void.
7. What is the size of an int?

○ Typically 4 bytes, but it depends on the system.

8. What is the difference between signed and unsigned integers?

○ Signed integers can store negative values, whereas unsigned integers
can only store positive values.

9. What is a pointer?

○ A pointer is a variable that stores the memory address of another variable.
10. What is the difference between float and double?

○ float has 6-7 decimal precision, while double has 15-16 decimal

precision.

Operators and Expressions

11. What are the different types of operators in C?

○ Arithmetic, relational, logical, bitwise, assignment, and special operators.
12. What is the modulus operator (%) used for?

○ It returns the remainder of a division operation.

13. What is the difference between = and ==?

○ = is an assignment operator, while == is a comparison operator.
14. What is a ternary operator?

○ condition ? expression1 : expression2 is a shorthand for

if-else.
15. What is the difference between pre-increment and post-increment?

○ ++i increments before use, while i++ increments after use.

Control Flow

16. What are conditional statements in C?

○ if, if-else, else-if, and switch.

17.What is the syntax of a switch statement?

switch(expression)

{ case value1:
//

code
break;

case value2:
//

code
break;

default:
// code

}

17. What is the difference between for, while, and do-while loops?

○ for: Initialization, condition, and increment in one line.

○ while: Checks condition before execution.
○ do-while: Executes at least once before checking the condition.

20.Write a C program to print numbers from 1 to 10 using a for loop.

#include
<stdio.h> int
main() {

for(int i = 1; i <= 10; i++) {
printf("%d\n", i);

}
return 0;

}

Functions

18. What is a function in C?

○ A function is a block of code designed to perform a specific task.
19. What are function prototypes?

○ A function declaration before its definition.

20. What is recursion?

○ A function that calls itself.

24.Write a recursive function for factorial.

int factorial(int n) {

if(n == 0) return 1;
return n * factorial(n - 1);

}

21. What is the difference between call by value and call by reference?

○ Call by value passes a copy of the argument, while call by reference

passes the memory address.

Pointers and Arrays

22. What is a NULL pointer?

○ A pointer that does not point to any memory location.

23. What is a pointer to a pointer?

○ A pointer that stores the address of another pointer.

24. What is a dangling pointer?

○ A pointer that points to a deallocated memory location.

Structures and Unions

25. What is a structure in C?

○ A user-defined data type that groups variables.
26. What is the difference between struct and union?

○ struct allocates memory for all members, union shares memory

among members.

Memory Management

27. What is malloc()?

○ Allocates memory dynamically.
28. What is free()?

○ Deallocates memory allocated by malloc().

File Handling

29. What are the file handling functions in C?
○ fopen(), fclose(), fscanf(), fprintf(), fgets(), fputs().

Advanced C Concepts

30. What are macros in C?

○ Preprocessor directives using #define.
31. What is the use of typedef?

○ Used to define new names for data types.

32. What is an enum in C?

○ A user-defined data type for constants.
33. What are header files?

○ Files that contain function declarations and macros.

34. What is volatile in C?

○ It prevents compiler optimization for a variable.

Here are the remaining 60 C interview questions along with their answers:

Memory Management (Continued)

35. What is calloc()?

○ calloc() allocates memory for multiple blocks and initializes them to zero.
36. What is realloc()?

○ realloc() changes the size of an allocated memory block.

37. What happens if free() is called twice on the same pointer?

○ It may cause undefined behavior or program crash.
38. What is memory leak?

○ When dynamically allocated memory is not freed, causing memory wastage.

39. How can you avoid memory leaks in C?

○ Always free allocated memory using free() before losing its reference.

Strings in C

46.How do you declare a string in C?
char str[] = "Hello";

47. What is strlen() used for?

○ Returns the length of a string.
48. What is strcpy() used for?

○ Copies one string into another.

49. What is the difference between strcat() and strncat()?

○ strcat() appends the full string, strncat() appends a limited number
of characters.

50. How do you compare two strings in C?

○ Using strcmp(str1, str2).

Preprocessor Directives

51. What is #define in C?

○ Used to define macros.
52. What is #include?

○ Used to include header files.

53. What is the difference between #include <filename> and
#include "filename"?

○ <filename> searches in standard directories, "filename" searches in

the current directory first.
54. What is #ifdef used for?

○ Checks if a macro is defined.

55. What is the purpose of #pragma?

○ Used for compiler-specific instructions.

Bitwise Operators

56. What are bitwise operators in C?

○ & (AND), | (OR), ^ (XOR), ~ (NOT), << (left shift), >> (right shift).
57. What does x << 1 do?

○ Multiplies x by 2.

58. What does x >> 1 do?

○ Divides x by 2.
59. What is bit masking?

○ Using bitwise operations to set, clear, or toggle specific bits.

60.Write a program to check if a number is even or odd using bitwise operators.

#include

<stdio.h> int

main() {

int num;

printf("Enter a number: ");

scanf("%d", &num);

if (num & 1)

printf("Odd\n");

else

printf("Even\n");

return 0;

}

Structures and Unions (Continued)

61.How do you declare a structure?

struct Student {

char

name[50]; int

age;

};

62.How do you access structure members?

○ Using the dot operator (student.age).

63.How do you pass a structure to a function?

void display(struct Student s) { printf("%s %d", s.name, s.age); }

64.How do you allocate memory dynamically for a structure?
struct Student *s = (struct Student*)malloc(sizeof(struct Student));

65. What is the difference between structure and class (in C++)?

○ Structures have public access by default, whereas classes have
private access by default.

File Handling (Continued)

What is the syntax of fopen()?

FILE *fp = fopen("file.txt", "r");

66. What are different file modes in C?

○ "r", "w", "a", "r+", "w+", "a+".

67. How do you read a file in C?

○ Using fscanf(), fgets(), fgetc().
68. How do you write to a file in C?

○ Using fprintf(), fputs(), fputc().

70.How do you close a file?

fclose(fp)

Advanced C Concepts

71.What is an enum?

enum Days { MON, TUE, WED };

72.What is a function pointer?
void

(*func_ptr)(int);

73. What is a volatile variable?

○ Prevents compiler optimizations.
74. What is a static variable?

○ Retains its value across function calls.

75. What is the const keyword?

○ Declares a variable as read-only.

Common Mistakes in C

76. What happens if a pointer is not initialized?

○ It may cause undefined behavior.
77. What is an off-by-one error?

○ A common error in loops or array indexing.

78. What happens if you access an array out of bounds?

○ May cause segmentation fault.
79. What happens if a function is declared but not defined?

○ Linker error.

80. What happens if return is missing in a non-void function?

○ Undefined behavior.

Multithreading and Concurrency

81. Does C support multithreading natively?

○ No, but we can use pthread library.

82.How do you create a thread in C?
pthread_create(&thread, NULL, function, NULL);

83. What is a mutex?

○ A lock mechanism to prevent race conditions.
84. What is a race condition?

○ When multiple threads access shared data incorrectly.

85. What is deadlock?

○ When two or more threads are stuck waiting for each other.

Debugging and Optimization

86. What is gdb?

○ A debugger for C programs.
87. How do you use printf() for debugging?

○ Print variable values during execution.

88. What is valgrind?

○ A tool for memory leak detection.
89. How do you optimize C code?

○ Using efficient algorithms, compiler optimizations, and reducing

memory usage.
90. What is the purpose of inline functions?

○ Reduces function call overhead.

Miscellaneous Questions

91. What is the output of printf("%d", sizeof(int));?

○ 4 (on most systems).
92. What is an lvalue and an rvalue?

○ lvalue: Can be assigned to.
○ rvalue: Cannot be assigned to.

93. How do you implement a stack in C?

○ Using arrays or linked lists.
94. What is a segmentation fault?

○ Accessing invalid memory.

95. How do you reverse a string in C?

○ Using a loop or recursion.

96. Factorial of a Number

#include <stdio.h>

long long factorial(int n) {

if (n == 0) return 1;

return n * factorial(n - 1);

}

int main() {

int num;

printf("Enter a number: ");

scanf("%d", &num);

printf("Factorial of %d is %lld\n", num, factorial(num));

return 0;

}

✅ Explanation:

● Uses recursion to calculate factorial (n! = n * (n-1)!).
● If n == 0, it returns 1 (base case).
● Otherwise, it keeps calling itself with n-1 until reaching 0.

97. Fibonacci Series

#include <stdio.h>

void fibonacci(int n) {

int a = 0, b = 1,

next;

printf("Fibonacci Series: %d %d ", a, b);

for (int i = 2; i < n; i++) {

next = a + b;

printf("%d ", next);

a = b;

b = next;

}

}

int main() {

int n;

printf("Enter the number of terms: ");

scanf("%d", &n);

fibonacci(n);

return 0;

}

✅ Explanation:

● Uses iteration to generate n Fibonacci numbers.
● Starts with 0 and 1, then calculates next = a + b.
● Updates a and b in each iteration.

98. Palindrome Number Check

#include <stdio.h>

int isPalindrome(int num) {

int rev = 0, original = num, remainder;

while (num > 0) {

remainder = num % 10;

rev = rev * 10 +

remainder; num /= 10;

}

return original == rev;

}

int main() {

int num;

printf("Enter a number: ");

scanf("%d", &num);

if (isPalindrome(num))

printf("%d is a Palindrome\n", num);

else

printf("%d is not a Palindrome\n", num);

return 0;

}

✅ Explanation:

● Reverses the number and checks if the original and reversed numbers are the same.
● Uses a loop to extract digits and build the reversed number.

99. Swapping Two Numbers (Using a Third Variable)

#include <stdio.h>

int main() {

int a, b, temp;

printf("Enter two numbers: ");

scanf("%d %d", &a, &b);

temp = a;

a = b;

b = temp;

printf("After swap: a = %d, b = %d\n", a, b);

return 0;

}

✅ Explanation:

● Uses a temporary variable to swap values.
● temp stores a, then a = b and b = temp.

100. Swapping Two Numbers (Without Using a Third Variable)

#include <stdio.h>

int main() {

int a, b;

printf("Enter two numbers: ");

scanf("%d %d", &a, &b);

a = a + b;

b = a - b;

a = a - b;

printf("After swap: a = %d, b = %d\n", a, b);

return 0;

}

✅ Explanation:

● Uses arithmetic operations to swap values without extra memory.
● Addition and subtraction are used to swap values logically.

C++ interview questions and answers

1. What is C++?

○ C++ is a general-purpose, object-oriented programming
language that extends C with additional features such as classes,
objects, and polymorphism.

2. What are the key features of C++?

○ Object-oriented, platform-independent, rich standard library,
memory management, and strong type checking.

3. What is the difference between C and C++?

○ C is procedural, while C++ supports object-oriented programming.
C++ has features like classes, polymorphism, and exception handling.

4. What is a class in C++?

○ A class is a blueprint for creating objects. It defines data
members and member functions.

5. What is an object in C++?

○ An object is an instance of a class.

6.

What are access specifiers in C++?

○ Public, private, and protected.

7. What is a constructor?

○ A constructor is a special function that initializes an object when it is
created.

8. What is a destructor?

○ A destructor is a special function that is automatically called when an
object goes out of scope.

9. What is function overloading?

○ Function overloading allows multiple functions with the same
name but different parameters.

10. What is operator overloading?

○ Operator overloading allows defining new meanings for existing
operators.

11. What is inheritance in C++?

○ Inheritance allows a class (child) to derive properties from another
class (parent).

12. What is polymorphism?

○ Polymorphism allows functions to behave differently based on the
object calling them.

13. What is encapsulation?

○ Encapsulation binds data and functions into a single unit.

14. What is abstraction?

○ Abstraction hides implementation details from the user.
15. What is a virtual function?

○ A virtual function is a function in a base class that can be
overridden in a derived class.

16. What is pure virtual function?

○ A pure virtual function has = 0 in its declaration and forces derived
classes to implement it.

17. What is an abstract class?

○ A class with at least one pure virtual function.
18. What is multiple inheritance?

○ Multiple inheritance allows a class to inherit from more than one base
class.

19. What is the difference between struct and class in C++?

○

struct members are public by default, while class members are private
by default.

20. What is a reference variable in C++?

○ A reference variable is an alias for another variable.

21. What is the ‘this’ pointer?

○ The this pointer refers to the calling object.

22. What is the difference between new and malloc?

○ new initializes objects, while malloc does not.

23. What is a static member function?

○ A static function belongs to the class, not an object.

24. What is a namespace in C++?

○ A namespace prevents naming conflicts.

25. What is the difference between endl and \n?

○ endl flushes the output buffer, while \n does not.

Intermediate Level (26-50)
26. What is a friend function?

○ A function that can access private members of a class.

27. What is the difference between deep copy and shallow copy?

○ Deep copy duplicates dynamically allocated memory; shallow
copy only copies pointers.

28. What is an inline function?

○ An inline function is expanded in place to reduce function call overhead.

29. What is a copy constructor?

○ A copy constructor initializes an object using another object of the
same class.

30. What is the difference between const int *ptr and int *const ptr?

○ const int *ptr means the value is constant; int *const ptr
means the pointer is constant.

31. What are function pointers?

○ Function pointers store addresses of functions.

32. What is exception handling?

○

Handling runtime errors using try, catch, and throw.

33. What is RAII (Resource Acquisition Is Initialization)?

○ A technique where resources are allocated in constructors and
released in destructors.

34. What is a template in C++?

○ A template allows writing generic code for multiple data types.
35. What are smart pointers?

○ Smart pointers manage dynamic memory automatically.

36. What is the Standard Template Library (STL)?

○ A collection of classes and functions for data structures and algorithms.

37. What are iterators in C++?

○ Iterators provide a way to traverse STL containers.

38. What is std::vector?

○ A dynamic array implementation in STL.

39. What is the difference between map and unordered_map?

○ map is ordered (RB Tree), while unordered_map is unordered (Hash
Table).

40. What is std::pair in C++?

○ A pair stores two values of different types.

41. What is lambda expression?

○ A lambda is an anonymous function.
42. What is std::unique_ptr?

○ A smart pointer for unique ownership.

43. What is std::shared_ptr?

○ A smart pointer for shared ownership.

44. What is std::weak_ptr?

○ A weak reference to avoid circular dependencies.

45. What is std::move?

○ std::move transfers ownership of resources.

46. What is move semantics?

○ Move semantics allow efficient resource transfer.

47. What is the difference between ++i and i++?

○ ++i increments before use; i++ increments after use.
48. What is volatile keyword?

○ volatile tells the compiler not to optimize variable access.

49. What is memory leak?

○ A memory leak occurs when allocated memory is not deallocated.

50. What is delete operator in C++?

○ It deallocates memory allocated using new.

51. Smart Pointers
❓ What is std::unique_ptr? How do you use it?

✅ Answer: std::unique_ptr ensures exclusive ownership of dynamically allocated

objects.

#include <iostream>
#include <memory>

class Example {
public:

Example() { std::cout << "Constructor\n"; }

~Example() { std::cout << "Destructor\n"; }

};

int main() {
std::unique_ptr<Example> ptr = std::make_unique<Example>(); return 0;

}

52. std::shared_ptr Usage

❓ What is std::shared_ptr? Demonstrate usage.

✅ Answer: std::shared_ptr allows multiple owners of a single object. #include

<iostream>

#include <memory>

class Example {
public:

Example() { std::cout << "Constructor\n"; }

~Example() { std::cout << "Destructor\n"; }
};

int main() {

std::shared_ptr<Example> ptr1 = std::make_shared<Example>();
std::shared_ptr<Example> ptr2 = ptr1;

return 0;

}

53. std::weak_ptr and Circular References

❓ Why use std::weak_ptr?

✅ Answer: Prevents circular references in std::shared_ptr.

#include <iostream>
#include <memory>

class A { public:

std::shared_ptr<A> self;

~A() { std::cout << "Destructor called\n"; }
};

int main() {

std::shared_ptr<A> obj = std::make_shared<A>();
obj->self = obj; // Circular reference leads to memory leak

}

👉 Fix: Use std::weak_ptr.

54. Custom Deleter in Smart Pointer
#include <iostream>
#include <memory>

struct Free {

void operator()(int* ptr) {
std::cout << "Custom Deleter called\n";
delete ptr;

}

};

int main() {
std::unique_ptr<int, Free> ptr(new int(42));
return 0;

}

55. Implement a Singleton Pattern
#include <iostream>

class Singleton {
public:

static Singleton& getInstance() {
static Singleton instance;
return instance;

}

void show() { std::cout << "Singleton Instance\n"; }
private:

Singleton() {}

Singleton(const Singleton&) = delete;
Singleton& operator=(const Singleton&) = delete;

};

int main() {
Singleton::getInstance().show();

}

56. Using std::future and std::async
#include <iostream>
#include <future>

int compute()
{ return 42;

}

int main() {

std::future<int> f = std::async(std::launch::async, compute); std::cout <<
"Result: " << f.get() << "\n";

}

57. Implementing a Thread-safe Singleton
#include <iostream>
#include <mutex>

class ThreadSafeSingleton { public:
static ThreadSafeSingleton& getInstance() {

static ThreadSafeSingleton instance;
return instance;

}

private:
ThreadSafeSingleton() = default;
ThreadSafeSingleton(const ThreadSafeSingleton&) = delete; ThreadSafeSingleton&
operator=(const ThreadSafeSingleton&) = delete;

};

int main() {
ThreadSafeSingleton& obj = ThreadSafeSingleton::getInstance();

}

58. Implementing RAII for File Handling
#include <iostream>
#include <fstream>

class FileHandler {
std::ofstream
file;

public:

FileHandler(const std::string& filename) {

file.open(filename);

}

~FileHandler(
) {
file.close();

}

};

int main() {

FileHandler fh("test.txt");
}

59. Using std::variant for Type Safety
#include <iostream>
#include <variant>

int main() {

std::variant<int, double, std::string> var; var =
"Hello";

std::cout << std::get<std::string>(var) << "\n";

}

60. Implementing Producer-Consumer using
std::condition_variable

#include <iostream>
#include <thread>
#include <queue>

#include <condition_variable>

std::queue<int> q;
std::mutex mtx;
std::condition_variable cv;
bool done = false;

void producer() {

for (int i = 0; i < 5; ++i) {
std::unique_lock<std::mutex> lock(mtx);
q.push(i);

cv.notify_one();

}
done = true;
cv.notify_all();

}

void consumer() {
while (true) {
std::unique_lock<std::mutex> lock(mtx);
cv.wait(lock, [] { return !q.empty() || done; }); if
(!q.empty()) {

std::cout << "Consumed: " << q.front() << "\n";
q.pop();
} else if (done)

{ break;

}

}
}

int main() {

std::thread t1(producer);
std::thread t2(consumer);

t1.join();

t2.join();

}

61.

Using std::transform for Function Application
#include <iostream>
#include <vector>
#include <algorithm>

int main() {

std::vector<int> v = {1, 2, 3, 4};
std::transform(v.begin(), v.end(), v.begin(), [](int x) { return x * x; }); for (int
n : v) std::cout << n << " ";

}

62. Implementing a Custom Allocator
#include <iostream>
#include <memory>

template <typename T>
struct CustomAllocator {

T* allocate(size_t n) {

return static_cast<T*>(::operator new(n * sizeof(T)));
}

void deallocate(T* p, size_t) {

::operator delete(p);
}

};

int main() {

CustomAllocator<int> allocator;
int* ptr = allocator.allocate(5);
allocator.deallocate(ptr, 5);

}

63. Using std::optional to Handle Nullable Values
#include <iostream>
#include <optional>

std::optional<int> findValue(bool found) { if
(found) return 42;

return std::nullopt;

}

int main() {

auto val = findValue(true);
if (val) std::cout << "Value: " << val.value() << "\n";

}

Here are 64-100 advanced C++ interview questions with answers, covering STL, memory
management, multithreading, smart pointers, design patterns, templates, and more.

📌 Memory Management & Pointers
64. What is memory alignment in C++?
✅ Answer: Memory alignment ensures that variables are stored in memory at addresses
that are multiples of their size, improving CPU efficiency.
#include <iostream>

struct Aligned {

char a; // 1 byte

int b; // 4 bytes
double c; // 8 bytes

}; // Struct size will be 16 due to padding.

int main() {

std::cout << "Size of Aligned: " << sizeof(Aligned) << std::endl;
}

65. What is placement new?
✅ Answer: Placement new allows constructing an object in pre-allocated memory. #include

<iostream>

int main() {
char buffer[sizeof(int)];
int* p = new (buffer) int(42); // Placement new
std::cout << *p << std::endl;

}

66.

What is the difference between new and malloc?
✅ Answer:

● new calls the constructor, while malloc does not.
● new returns the correct type, malloc returns void*.

📌 Advanced Object-Oriented
Programming (OOP)
67. What is slicing in C++?
✅ Answer: Object slicing happens when a derived class object is assigned to a base class,
losing derived-specific data.

#include <iostream>

class Base { public: int x = 10; };

class Derived : public Base { public: int y = 20; };

int main() {
Derived
d;

Base b = d; // Object slicing: `b` loses `y`

}

68. What is the difference between static and dynamic
polymorphism?

✅ Answer:

● Static Polymorphism: Function overloading, operator overloading,
templates.
● Dynamic Polymorphism: Virtual functions, runtime method overriding.

📌 Multithreading & Concurrency
69. How does std::mutex prevent race conditions?
✅ Answer: std::mutex ensures only one thread accesses shared data at a time.

#include <iostream>

#include <thread>
#include <mutex>

std::mutex mtx;
int counter = 0;

void increment() {
std::lock_guard<std::mutex> lock(mtx);
counter++;

}

int main() {

std::thread t1(increment);
std::thread t2(increment);
t1.join();

t2.join();

std::cout << "Counter: " << counter << std::endl;
}

70. What is std::atomic and how does it work?

✅ Answer: std::atomic ensures atomic operations without using locks. #include

<iostream>

#include <atomic>

std::atomic<int> count(0);

void increment() {
count.fetch_add(1, std::memory_order_relaxed);

}

int main() {
increment();

std::cout << "Count: " << count.load() << std::endl;

}

71. What is std::condition_variable?
✅ Answer: std::condition_variable allows a thread to wait for a condition. #include

<iostream>

#include <thread>
#include <mutex>

#include <condition_variable>

std::mutex mtx;
std::condition_variable cv;
bool ready = false;

void waitForEvent() {
std::unique_lock<std::mutex> lock(mtx);
cv.wait(lock, [] { return ready; });

std::cout << "Event received!" << std::endl;

}

void signalEvent() { std::this_thread::sleep_for(std::chrono::seconds(1));
std::lock_guard<std::mutex> lock(mtx);

ready = true;
cv.notify_one();

}

int main() {

std::thread t1(waitForEvent);
std::thread t2(signalEvent);
t1.join();

t2.join();

}

📌 STL & Advanced Data Structures
72. What is std::map and how is it implemented?
✅ Answer: std::map is implemented as a Red-Black Tree (self-balancing BST). #include

<iostream>

#include <map>

int main() {

std::map<int, std::string> m; m[1]
= "One";

m[2] = "Two";

for (auto& p : m)
std::cout << p.first << ": " << p.second << std::endl;

}

73. What is std::unordered_map and how is it
implemented?
✅ Answer: std::unordered_map is implemented using a Hash Table, giving O(1)

average time complexity for lookups.

#include <iostream> #include
<unordered_map>

int main() {

std::unordered_map<int, std::string> um; um[1]
= "One";
um[2] = "Two"; for
(auto& p : um)

std::cout << p.first << ": " << p.second << std::endl;

}

📌 Design Patterns
74. Implement a Factory Pattern in C++
#include <iostream>

class Animal { public:

virtual void speak() = 0;

};

class Dog : public Animal {
public:

void speak() override { std::cout << "Bark!" << std::endl; }

};

class AnimalFactory { public:

static Animal* createAnimal() { return new Dog(); }

};

int main() {

Animal* animal = AnimalFactory::createAnimal();

animal->speak();

delete animal;

}

75. Implement the Observer Pattern in C++
#include <iostream>
#include <vector>

class Observer {
public:

virtual void notify() = 0;

};

class Subject {
std::vector<Observer*> observers;

public:

void addObserver(Observer* obs) { observers.push_back(obs); } void
notifyAll() {

for (auto obs : observers) obs->notify();

}
};

class ConcreteObserver : public Observer { public:

void notify() override { std::cout << "Notified!" << std::endl; }

};

int main() {
Subject
subject;

ConcreteObserver obs;
subject.addObserver(&obs); subject.notifyAll();

}

📌 Advanced C++ Features
76. What is std::any and how is it used?
✅ Answer: std::any can hold any data type.

#include <iostream>

#include <any>

int main() {

std::any data = 42;
std::cout << std::any_cast<int>(data) << std::endl;

}

77.

What is std::variant and why use it?
✅ Answer: std::variant is a type-safe union. #include

<iostream>

#include <variant>

int main() {
std::variant<int, double, std::string> var = "Hello";
std::cout << std::get<std::string>(var) << std::endl;

}

Here are 23 advanced C++ interview questions and answers (78-100) covering
multithreading, memory management, STL, design patterns, and modern C++
features.

🔹78. What is the difference between std::function
and function pointers?
✅ Answer:

● std::function is a wrapper for callable objects, including
lambda expressions, function pointers, and functors.

● Function pointers only store addresses of functions.

#include <iostream>
#include <functional>
void func(int x) { std::cout << "Function: " << x << "\n"; } int

main() {

std::function<void(int)> f = func; // std::function

void (*ptr)(int) = func; // Function pointer

f(10);

ptr(20);
}

🔹79. What is std::bind, and how does it work?
✅ Answer:

●

std::bind binds function arguments and creates a callable object.

#include <iostream>

#include <functional>

void multiply(int a, int b) { std::cout << "Result: " << a * b << "\n"; } int

main() {

auto boundFunc = std::bind(multiply, 10, std::placeholders::_1);
boundFunc(5); // Equivalent to multiply(10, 5);

}

🔹80. How does std::visit work with
std::variant?
✅ Answer:

● std::visit is used to apply a visitor function to

std::variant. #include <iostream>

#include <variant>

int main() {

std::variant<int, double, std::string> var = 10;

std::visit([](auto&& val) { std::cout << "Value: " << val << "\n"; }, var);

}

🔹81. What is the CRTP (Curiously Recurring Template
Pattern)?
✅ Answer:

● CRTP is used to achieve static

polymorphism. #include <iostream>

template <typename T>
class Base {

public:

void interface() { static_cast<T*>(this)->implementation(); }
};

class Derived : public Base<Derived> {
public:

void implementation() { std::cout << "Derived implementation\n"; }

};

int main() {
Derived d;
d.interface();

}

🔹82. What is std::invoke in C++?
✅ Answer:

● std::invoke calls functions, function objects, or member

functions. #include <iostream>

#include <functional>

struct Foo {
int add(int a, int b) { return a + b; }

};

int main() {
Foo obj;

auto result = std::invoke(&Foo::add, obj, 5, 3); std::cout
<< "Result: " << result << "\n";

}

🔹83. How do you implement a thread pool in C++?
✅ Answer:

● Use std::thread, std::mutex,

std::condition_variable. #include <iostream>

#include <thread>

#include <vector>
#include <queue>

#include <functional>

#include <condition_variable>

class ThreadPool { std::vector<std::thread>
workers;
std::queue<std::function<void()>> tasks;
std::mutex queue_mutex;
std::condition_variable condition;

bool stop = false;

public:
ThreadPool(size_t threads);
void enqueue(std::function<void()> task);
~ThreadPool();

};

ThreadPool::ThreadPool(size_t threads) {
for (size_t i = 0; i < threads; ++i) {

workers.emplace_back([this]
{ while (true) {

std::function<void()> task;

{
std::unique_lock<std::mutex> lock(queue_mutex);
condition.wait(lock, [this] { return stop || !tasks.empty(); }); if
(stop && tasks.empty()) return;
task = std::move(tasks.front());
tasks.pop();

}

task();
}

});
}

}

void ThreadPool::enqueue(std::function<void()> task) {

{
std::unique_lock<std::mutex> lock(queue_mutex);
tasks.emplace(std::move(task));

}
condition.notify_one();

}

ThreadPool::~ThreadPool() {

{
std::unique_lock<std::mutex> lock(queue_mutex);
stop = true;

}

condition.notify_all();
for (std::thread &worker : workers)

worker.join();

}

int main() {
ThreadPool
pool(4);

pool.enqueue([] { std::cout << "Task executed\n"; });

}

🔹84. What is the difference between std::mutex,
std::recursive_mutex, and std::shared_mutex?

✅ Answer:

● std::mutex: Basic lock mechanism.
● std::recursive_mutex: Allows reentrant locking by the same thread.
● std::shared_mutex: Allows multiple readers but only one writer.

🔹85. How does std::atomic ensure thread safety?
✅ Answer:

● std::atomic provides atomic operations to prevent data

races. #include <iostream>

#include <atomic>

#include <thread>

std::atomic<int> counter(0);

void increment() {

for (int i = 0; i < 1000; ++i) counter++;
}

int main() {

std::thread t1(increment), t2(increment);
t1.join();

t2.join();

std::cout << "Counter: " << counter << "\n";
}

🔹86. What is std::scoped_lock in C++17?
✅ Answer:

● A safer alternative to std::lock_guard for handling multiple

mutexes. #include <iostream>

#include <mutex>

std::mutex m1, m2;

void safe_function() {

std::scoped_lock lock(m1, m2); std::cout
<< "Thread safe execution\n";

}

🔹87. Explain how std::forward works with perfect

forwarding.
✅ Answer:

● std::forward preserves value category when forwarding function

arguments. #include <iostream>

#include <utility>

template <typename T> void
wrapper(T&& arg) {

process(std::forward<T>(arg));

}

🔹88. Explain Copy Elision in C++.
✅ Answer:

● Optimizes object copying by eliminating unnecessary constructor calls.

struct Test {
Test() { std::cout << "Constructor\n"; }
Test(const Test&) { std::cout << "Copy Constructor\n"; }

};

Test create() {
return Test();

}

int main() {

Test obj = create();
}

🔹89. What is std::optional and when to use it?
✅ Answer:

●

Use std::optional to represent missing values instead of using nullptr.

Here are 10 advanced C++ interview questions and answers (90-100), covering
metaprogramming, STL, multithreading, design patterns, memory management, and modern
C++ features.

90. What is Expression Templates in C++?
✅ Answer: Expression templates enable lazy evaluation and eliminate unnecessary
temporary objects in operations like matrix manipulation or vector arithmetic.

👉 Example:

#include <iostream>
#include <vector>

template <typename L, typename R>
class Add {

const L& lhs; const
R& rhs;

public:

Add(const L& l, const R& r) : lhs(l), rhs(r) {}
auto operator[](size_t i) const { return lhs[i] + rhs[i]; }

};

template <typename L, typename R>

auto operator+(const L& lhs, const R& rhs) {
return Add<L, R>(lhs, rhs);

}

int main() {
std::vector<int> a = {1, 2, 3}, b = {4, 5, 6};
auto result = a + b; // No temporary vector!
std::cout << result[0] << " " << result[1] << " " << result[2] << "\n";

}

91. What are Compile-time and Runtime Polymorphism?
✅ Answer:

● Compile-time: Achieved using function overloading, operator overloading,
and templates.

● Runtime: Achieved using virtual functions and dynamic dispatch.

👉 Example:
#include <iostream>

class Base {

public:

virtual void show() { std::cout << "Base class\n"; }
};

class Derived : public Base { public:

void show() override { std::cout << "Derived class\n"; }

};

int main() {

Base* obj = new Derived();
obj->show(); // Runtime Polymorphism
delete obj;

}

92. What is Type Erasure in C++?
✅ Answer: Type erasure removes type-specific details, allowing polymorphic
behavior without inheritance.

👉 Example Using std::function

#include <iostream>
#include <functional>
void hello() { std::cout << "Hello World\n"; } int

main() {

std::function<void()> func = hello; // Type erased function

func();
}

 Key Concept: std::function<void()> can hold any callable entity.

93. How Does std::any Work?

✅ Answer: std::any stores any type but requires explicit casting.

👉 Example:

#include <iostream>
#include <any>

int main() {

std::any data = 42;
std::cout << std::any_cast<int>(data) << "\n";

}

 Key Concept: std::any_cast<T> retrieves stored data.

94. Explain std::variant and How It Differs from
std::any

✅ Answer: std::variant holds one type at a time (like a type-safe union).

👉 Example:

#include <iostream>
#include <variant>

int main() {

std::variant<int, std::string> v = "Hello"; std::cout
<< std::get<std::string>(v) << "\n";

}

Key Concept: Use std::get<T>() to retrieve the active type.

95. What is std::monostate in std::variant?

✅ Answer: std::monostate is a default type when std::variant may be empty.

👉 Example:

#include <iostream>
#include <variant>
std::variant<std::monostate, int, std::string> v; int

main() {

if (std::holds_alternative<std::monostate>(v))

std::cout << "Variant is empty\n";
}

 Key Concept: Helps when default-initializing a std::variant.

96. What is the Curiously Recurring Template Pattern
(CRTP)?
✅ Answer: CRTP allows static polymorphism, avoiding virtual function overhead.

👉 Example:

#include <iostream>

template <typename Derived> class
Base {

public:

void interface() {
static_cast<Derived*>(this)->implementation();

}
};

class Derived : public Base<Derived> {
public:

void implementation() { std::cout << "Derived class method\n"; }

};

int main() {
Derived

d;

d.interface(); // Calls Derived::implementation()

}

Key Concept: Simulates polymorphism at compile-time.

97. What is Placement new? Why Use It?

✅ Answer: Placement new constructs an object at a specific memory location.

👉 Example:
#include <iostream>

int main() {

char buffer[sizeof(int)];

int* p = new (buffer) int(42); // Placement new std::cout
<< *p << "\n";

}

🚀 Key Concept: Avoids dynamic memory allocation.

98. What is std::launder in C++17?

✅ Answer: std::launder helps access memory safely after placement new.

👉 Example:

#include <iostream>
#include <new>
struct A { int x; };

int main() {

alignas(A) char buffer[sizeof(A)];

A* ptr = new (buffer) A{10};
A* safe_ptr = std::launder(ptr); // Safe access std::cout <<
safe_ptr->x << "\n";

}

🚀 Key Concept: Prevents undefined behavior in memory management.

99. What is std::span? How is It Better Than Raw
Arrays?
✅ Answer: std::span is a lightweight view over contiguous data.

👉 Example:

#include <iostream>
#include

void print(std::span<int> arr) {

for (int i : arr) std::cout << i << " ";
}

int main() {

int data[] = {1, 2, 3, 4};
print(data); // No need to pass size

}

🚀 Key Concept: std::span avoids pointer decay issues.

100. What is std::forward_list? How is It
Different from std::list?

✅ Answer: std::forward_list is a singly linked list, using less memory than
std::list.

👉 Example:

#include <iostream>
#include <forward_list>

int main() {

std::forward_list<int> fl = {1, 2, 3};
fl.push_front(0); // Efficient insertion for
(int n : fl) std::cout << n << " ";

}

	C interview questions and answers
	1.What is C?
	2.What are the key features of C?
	3.What is the difference between C and C++?
	4.What is a compiler?
	5.What is the difference between a compiler and an interpreter?

	Data Types and Variables
	6.What are the basic data types in C?
	7.What is the size of an int?
	8.What is the difference between signed and unsigned integers?
	9.What is a pointer?
	10.What is the difference between float and double?

	Operators and Expressions
	11.What are the different types of operators in C?
	12.What is the modulus operator (%) used for?
	13.What is the difference between = and ==?
	14.What is a ternary operator?
	15.What is the difference between pre-increment and post-increment?

	Control Flow
	16.What are conditional statements in C?
	17.What is the syntax of a switch statement?
	17.What is the difference between for, while, and do-while loops?
	20.Write a C program to print numbers from 1 to 10 using a for loop.

	Functions
	18.What is a function in C?
	19.What are function prototypes?
	20.What is recursion?
	24.Write a recursive function for factorial.
	21.What is the difference between call by value and call by reference?

	Pointers and Arrays
	22.What is a NULL pointer?
	23.What is a pointer to a pointer?
	24.What is a dangling pointer?

	Structures and Unions
	25.What is a structure in C?
	26.What is the difference between struct and union?

	Memory Management
	27.What is malloc()?
	28.What is free()?

	File Handling
	29.What are the file handling functions in C?

	Advanced C Concepts
	30.What are macros in C?
	31.What is the use of typedef?
	32.What is an enum in C?
	33.What are header files?
	34.What is volatile in C?

	Memory Management (Continued)
	35.What is calloc()?
	36.What is realloc()?
	37.What happens if free() is called twice on the same pointer?
	38.What is memory leak?
	39.How can you avoid memory leaks in C?

	Strings in C
	46.How do you declare a string in C?
	47.What is strlen() used for?
	48.What is strcpy() used for?
	49.What is the difference between strcat() and strncat()?
	50.How do you compare two strings in C?

	Preprocessor Directives
	51.What is #define in C?
	52.What is #include?
	53.What is the difference between #include <filename> and #include "filename"?
	54.What is #ifdef used for?
	55.What is the purpose of #pragma?

	Bitwise Operators
	56.What are bitwise operators in C?
	57.What does x << 1 do?
	58.What does x >> 1 do?
	59.What is bit masking?
	60.Write a program to check if a number is even or odd using bitwise operators.

	Structures and Unions (Continued)
	61.How do you declare a structure?
	62.How do you access structure members?
	63.How do you pass a structure to a function?
	64.How do you allocate memory dynamically for a structure?
	65.What is the difference between structure and class (in C++)?
	66.What are different file modes in C?
	67.How do you read a file in C?
	68.How do you write to a file in C?
	70.How do you close a file?

	Advanced C Concepts
	71.What is an enum?
	72.What is a function pointer?
	73.What is a volatile variable?
	74.What is a static variable?
	75.What is the const keyword?

	Common Mistakes in C
	76.What happens if a pointer is not initialized?
	77.What is an off-by-one error?
	78.What happens if you access an array out of bounds?
	79.What happens if a function is declared but not defined?
	80.What happens if return is missing in a non-void function?

	Multithreading and Concurrency
	81.Does C support multithreading natively?
	82.How do you create a thread in C?
	83.What is a mutex?
	84.What is a race condition?
	85.What is deadlock?

	Debugging and Optimization
	86.What is gdb?
	87.How do you use printf() for debugging?
	88.What is valgrind?
	89.How do you optimize C code?
	90.What is the purpose of inline functions?

	Miscellaneous Questions
	91.What is the output of printf("%d", sizeof(int));?
	92.What is an lvalue and an rvalue?
	93.How do you implement a stack in C?
	94.What is a segmentation fault?
	95.How do you reverse a string in C?

	96.Factorial of a Number
	✅ Explanation:

	97.Fibonacci Series
	✅ Explanation:

	98.Palindrome Number Check
	✅ Explanation:

	99.Swapping Two Numbers (Using a Third Variable)
	✅ Explanation:

	100.Swapping Two Numbers (Without Using a Third Variable)
	✅ Explanation:

	C++ interview questions and answers
	Intermediate Level (26-50)
	51. Smart Pointers
	52. std::shared_ptr Usage
	53. std::weak_ptr and Circular References
	54. Custom Deleter in Smart Pointer
	55. Implement a Singleton Pattern
	56. Using std::future and std::async
	57. Implementing a Thread-safe Singleton
	58. Implementing RAII for File Handling
	59. Using std::variant for Type Safety
	60. Implementing Producer-Consumer using
	61.
	Using std::transform for Function Application
	62. Implementing a Custom Allocator
	63. Using std::optional to Handle Nullable Values

	📌 Memory Management & Pointers
	64. What is memory alignment in C++?
	65. What is placement new?
	66.
	What is the difference between new and malloc?

	📌 Advanced Object-Oriented Programming (OOP)
	67. What is slicing in C++?
	68. What is the difference between static and dynamic polymorphism?

	📌 Multithreading & Concurrency
	69. How does std::mutex prevent race conditions?
	70. What is std::atomic and how does it work?
	71. What is std::condition_variable?

	📌 STL & Advanced Data Structures
	72. What is std::map and how is it implemented?
	73. What is std::unordered_map and how is it implemented?

	📌 Design Patterns
	74. Implement a Factory Pattern in C++
	75. Implement the Observer Pattern in C++

	📌 Advanced C++ Features
	76. What is std::any and how is it used?
	77.
	What is std::variant and why use it?
	🔹78. What is the difference between std::function and function pointers?
	🔹79. What is std::bind, and how does it work?
	🔹80. How does std::visit work with std::variant?
	🔹81. What is the CRTP (Curiously Recurring Template Pattern)?
	🔹82. What is std::invoke in C++?
	🔹83. How do you implement a thread pool in C++?
	🔹84. What is the difference between std::mutex, std::recursive_mutex, and std::shared_mutex?
	🔹85. How does std::atomic ensure thread safety?
	🔹86. What is std::scoped_lock in C++17?
	🔹87. Explain how std::forward works with perfect forwarding.
	🔹88. Explain Copy Elision in C++.
	🔹89. What is std::optional and when to use it?
	90. What is Expression Templates in C++?
	91. What are Compile-time and Runtime Polymorphism?
	92. What is Type Erasure in C++?
	93. How Does std::any Work?
	94. Explain std::variant and How It Differs from std::any
	95. What is std::monostate in std::variant?
	96. What is the Curiously Recurring Template Pattern (CRTP)?
	97. What is Placement new? Why Use It?
	98. What is std::launder in C++17?
	99. What is std::span? How is It Better Than Raw Arrays?
	100. What is std::forward_list? How is It Different from std::list?

